
Catholic University of Louvain

Faculty of Applied Sciences

Computer Science Department

Discovery of Internet topology through active probing

Thesis submitted in partial fulfillement

of the requirements for a degree of

Civil Engineering in Computer Science

by Gregory Culpin

Promoter : Professor Olivier Bonaventure

Readers : Benoit Donnet & Bruno Quoitin

Louvain-la-Neuve

August 2006

2

Acknowledgements

I wish to express my gratitude to everyone who contributed to this thesis, with particular thanks

to Olivier Bonaventure, Bruno Quoitin, Benoit Donnet, Angélique Baclin, Alain Guillet and my

parents who have all contributed with their time and effort.

3

Acknowledgements

4

Contents

1 Introduction 1

1.1 Motivations for discovering the Internet topology 3

1.2 Challenges and goals . 6

1.3 Thesis contributions . 7

1.4 Thesis organization . 8

2 Background 9

2.1 Internet topology overview . 9

2.1.1 AS-level topology . 9

2.1.2 IP-level topology . 12

2.1.3 Crossing the levels . 15

2.2 Internet routing policy concepts . 19

2.2.1 Inter-AS routing with BGP . 19

2.2.2 Intra-AS routing . 21

2.3 Alternative topology information sources . 22

2.3.1 Routing registry information . 22

2.3.2 BGP routing information . 23

3 Active probing and related work 25

3.1 Classic approach to active measurements . 25

3.1.1 Traceroute tool . 26

3.1.2 Existing discovery systems . 28

3.1.3 Limitations and issues . 31

3.1.4 Summary evaluation of current active probing systems 34

3.2 Doubletree . 35

3.2.1 Discovery process using trees . 35

3.2.2 Two-phase probing . 35

3.2.3 Stop sets and simple stopping rule . 36

I

CONTENTS

3.2.4 The Doubletree algorithm . 36

3.2.5 Choice of initial distance . 38

3.2.6 Inter-monitor communication load and Bloom filters 38

3.2.7 Advanced stopping rule using CIDR prefixes 39

3.2.8 Capping and clustering . 39

3.2.9 Evaluation . 40

4 Design and implementation 41

4.1 Design choices . 41

4.1.1 Choice of a network simulation framework 41

4.1.2 Functional requirements . 43

4.2 Implementation . 44

4.2.1 Discovery preparation . 45

4.2.2 Discovery simulation . 49

4.2.3 Discovery performance evaluation . 51

5 Test design and results 55

5.1 Test design . 55

5.1.1 Identification of heuristics . 56

5.1.2 Experimental planning approach . 57

5.1.3 Effect tests layout . 59

5.1.4 Choice of topologies . 59

5.2 Tests and results . 60

5.2.1 Standard deviation between repeated experiments 61

5.2.2 Impact of source and destination placement 61

5.2.3 Impact of clustering and capping . 66

5.2.4 Summary results . 67

6 Summary conclusions 69

Appendices 79

A Interaction with a C-BGP instance 81

B C-BGP patch source code 83

B.1 Added/modified functions to bgp.c . 83

B.2 Added/modified functions to as.c . 85

II

CONTENTS

C XML discovery files 87

C.1 XML Schema – discovery.xsd . 87

C.2 Example of generated discovery file – example1.xml 87

D Guidance for script usage 89

D.1 AS classification script usage . 89

D.2 Discovery setup script usage . 89

D.3 Discovery simulation script usage . 89

E Perl source code 91

E.1 AS-level topology classification script – classifyAS 91

E.2 Discovery setup script – setupDiscovery . 96

E.3 Discovery simulation script – performDiscovery 104

E.4 Doubletree algorithms module – doubletree.pm 110

E.5 Topology model module – topology.pm . 119

E.6 Tool module – tools.pm . 126

III

CONTENTS

IV

Chapter 1

Introduction

The Internet is a massive network used and built by many people. It is composed of well-

known hardware and software that allow large amounts of information to circulate within

it. Links carry IP data packets from one router to the next, routers receive packets from

a link and send them onto another, routing protocols determine the paths these packets will

take. Although unexpected interactions and vulnerabilities are still being discovered in these

components, published standards such as [1, 2, 3, 4, 5] contain well-documented information

about how they work in order to ensure their interoperability.

On the other hand, the way these components are arranged and configured to form networks is

much less well-understood. At an organisational level, the Internet is composed of more than

18,000 independently-administered networks 1 that interact to coordinate the delivery of IP

traffic. Each network is called an autonomous system (AS) and uses the textitBGP [6] global

routing protocol to exchange information about how to reach individual blocks of destination

IP addresses (prefixes). An AS applies local policies to select the best route for reaching each

prefix and to decide whether to propagate this route to neighbouring ASs.

The distributed structure of the Internet allows it to grow organically, without a centralized

administration and without the need to reveal internal policies or topology to others. Although

this structure has undeniable benefits, it makes precise knowledge of its topology difficult to

obtain. As a consequence, the general strategy of topology discovery is constrained to acquiring

local views of the network from several vantage points and merging these views in order to get

a presumably accurate map.

1Source CIDR report - http://www.cidr-report.org

1

CHAPTER 1 : Introduction

Internet topology information can be gathered from several sources, e.g. BGP table dumps

[7, 8], routing registry databases [9], active measurements . According to the current state of

research [10], it seems that no one source gives a better view of the network. Not only do they

each have their own perception of the same network, but hazardous features of the network

further complicate the task by leading to conflicting or incoherent views in between their own

vantage points. Moreover, the actual topology of the Internet remains unknown making it

difficult to compare, benchmark and optimise the results of the various discovery algorithms.

Internet topology can be investigated at different granularity levels, i.e. interface, router or AS,

with the final aim of obtaining an abstract representation. This representation is typically a

graph of nodes (vertices) and links (edges) which represent respectively the set of interfaces,

routers or ASs and their physical connections. Acknowledged information about the Internet’s

components, their interactions (e.g. high-level policy routing, low-level IP forwarding), its

structure (e.g. characteristic hierarchy of AS roles in the network [11]) and information sources

is supplied in Section 2.1.

This study concentrates on one of the most popular sources, namely active probing [12], which

consists of sending out probe packets into a network from a sender to a receiver. The standard

way of obtaining such measurements is to make use of the traceroute tool (proposed and

implemented by Deering and Jacobson in 1989) from a small number of monitors to a large

number of destinations. Acquired paths are then agglomerated and an approximate topology is

inferred. Several papers have however, underlined the fact this may introduce unwanted biases

[13, 14, 15] and that scaling up the number of monitors would give a more accurate view of the

topology. This current approach and its shortcomings are discussed in Section 3.1.

The current trend towards a relevant highly distributed system [16] by increasing the number

of monitors is not a trivial matter. Duplication of effort close to the monitors wastes time by

re-exploring previously discovered parts of the network, not to mention that probes converging

from a set of sources towards a given destination can resemble a distributed denial-of-service

(DDoS) attack as the probes converge from a set of sources towards a given destination. Prior

work at LiP6 has elaborated a cooperative topology discovery algorithm, Doubletree [17], which

deals with these issues while keeping high network coverage and which is presented in Section 3.2.

2

Section 1.1 : Motivations for discovering the Internet topology

The above-mentioned difficulties further justifies the usefulness of performing the discovery in

a known, controllable and predictable environment, i.e. by the means of a network simulator.

Its utilization facilitates detailed analysis of a discovery algorithm’s performance on a known

topology, and also avoids the practical problem of limited host access in the real network. In

order to model this process in the most realistic way, C-BGP [18], an advanced open source

network simulator, is used and provides a complete solver for the inter- and intra-domain routing

decision process.

1.1 Motivations for discovering the Internet topology

In its early years, monitoring Internet topology was a tractable problem. However, after

experiencing exponential growth during the 1990’s, inferring connectivity from any source of

information has become a daunting task. Although Internet access growth is slowing in most

developed countries (North America 110.4% during 2000-2005)2, it is still increasing rapidly in

the developing world (Asia 232.8% during 2000-2005). In addition new and existing users are

placing greater confidence in existing functions such as e-Commerce and e-Government, together

with emerging applications such as VoIP will tend to increase network loads giving traffic growth

rates in excess of the simple growth rate in the numbers of users. Thus knowledge of the Internet

topology is critical for engineering, research and many collaborative activities.

An accurate model of the topology and structure of the Internet is important in order to help

researchers determine and fix problems that it faces [19]. To this day, over 150 publications have

been based on or have used data from CAIDA’s Skitter [12], a well-known tracing infrastructure,

in many areas such as security (e.g. topology robustness) against attacks [20], IP traceback

architecture [21]) and routing (e.g. BGP configuration anomalies [22], multicast scaling [23]

understanding). Recent interest underlines this need, because such modelling can more generally

provide awareness about how traffic flows, how resources are used, and where infrastructural

vulnerabilities may lie.

Hereafter are described a series of motivations for discovering the Internet’s topology.

2Source Internet World Stats http://www.internetworldstats.com/stats.htm

3

CHAPTER 1 : Introduction

Growth Modelling

The growth and uptake of the Internet has consistently confounded the most optimistic predictions.

Access to good quality topology data permits researchers to show that the Internet is not as

chaotic as previously assumed. Faloutos et al. [24] demonstrated that a number power laws

apply to its topology, with further work [25] providing additional confirmation. Such work

enhances the ability to understand the drivers and other key factors influencing Internet growth

[26]. This is now of more than pure academic interest, as the Internet is a key infrastructure of

the global economy.

Simulations

One consequence of the magnitude of the Internet and its commercial ubiquity is that it is

difficult to change the software it uses: installation or updates of software that run inside

the network must not only be backward compatible, but it must also have been sufficiently

well tested to prove its value and that its deployment will cause no or limited interruption of

connectivity. These requirements are very difficult to fulfil when developing new functionality,

therefore commonly leading to the current patchwork of incremental solutions. As a result,

evaluation of solutions in a simulated environment are becoming more frequent thus attaching

even greater importance to accurate knowledge and understanding of Internet design.

Simulations can take place in inferred topologies from real network data, e.g. Skitter measurements.

They can alternatively be performed inside topologies constructed by generators such as BRITE

[27], GT-ITM [28], TIERS [29], IGen [30] or GHITLE [31]. These generally base themselves on

previously observed data to heuristically generate realistic environments.

Protocol Effectiveness

Internet topology should be transparent to the network protocols used across it, nonetheless

their effectiveness can be compromised. Topology has been shown to impact in several ways

for example; on the effectiveness of denial-of-service countermeasures [32, 33] and on routing

protocol performance Labovitz et al. [34]. Such understanding will have a contribution to future

protocol development.

4

Section 1.1 : Motivations for discovering the Internet topology

Network Management

Network topology information is useful in deciding whether to add new routers and to determine

whether current hardware is configured correctly. In large corporations and administrations,

delocalisation, outsourcing and collaborative teams working in many differing locations, makes

dependent than ever on networks and their effective management. In these environments where a

short network failure or significant congestion can result in significant implications for businesses

and administrations, the ability for network managers to analyse the topology in real-time will

enhance their ability to respond effectively.

Within small networks where the topology is well documented and relatively static, real-time

tools are less of an issue, but within large scale environments probably active 24/7, changes in

requirements can be significant and rapid. Topology discovery tools will contribute significantly

to the forward planning of capacity and performance for example by assisting in understanding

neighbouring ASes’ BGP Policies and peering agreements which may not otherwise be readily

available.

Siting

In this context, siting consists of locating the place where a structure is to be located. For

example, a network map can help users determine which ISP or AS to join in order to provide

best connectivity to and from the rest of the Internet, i.e. minimize latency, maximize available

bandwidth, etc.

As another example, consider a company managing a content distribution network (CDN) and

wanting to place replicas of website content in data-centres hosted by different ASs. It can

identify the IP prefixes and ASs responsible for a large portion of the site’s traffic. Given an

accurate view of the topology, it can then identify the best locations for its replicas.

Topology-aware algorithms

Topology information enables a new class of protocols and algorithms that exploit knowledge of

topology to improve performance. Examples include topology-sensitive policy and QoS routing,

and group communication algorithms with topology-aware process group selection, e.g. building

of overlay multicast trees.

5

CHAPTER 1 : Introduction

1.2 Challenges and goals

The first objective of this thesis is to provide a complete yet clear view of the current state of

Internet topology knowledge, while focusing enough on active probing methods to further be

able to, firstly, determine the functional requirements with which the implemented framework

must comply, secondly describe the simplifying hypotheses within which its simulations would

take place.

Once the requirements are set, the second objective is to design and implement, on top of an

appropriate network simulator, a simple traceroute-based discovery algorithm and the more

elaborate Doubletree discovery algorithm. An important part of the design is that it must

allow efficient discovery processes to be performed on large topologies and must supply detailed

information about its outcome. It should also be extensible by allowing easy modifications or

additional features to be included. Compatibility by providing support for other tools’ formats

can also be a goal.

The third objective is to analyse the implemented algorithms’ performance and, if applicable,

establish a comparison with previous work results. Indeed, detailed analysis could undermine

them as many studies state only hypothetical node and link coverage as they have partial

knowledge on the underlying topology.

The fourth and final objective is to find ways to optimise performance results in the light of

previous Internet topology structure studies. The possibility of applying statistical tools should

be considered for laying out such experiment plans ultimately leading to a optimizable model of

the discovery process, or through the selection of more intuitive heuristic-based experiments by

notably grasping opportunities of easy siting inside the simulated network and of total knowledge

of its behaviour.

6

Section 1.3 : Thesis contributions

1.3 Thesis contributions

In this thesis, an effective framework is designed for analysing in detail active topology discovery.

The framework uses an external network simulator to compute the network’s response to the

execution of two different active probing discovery processes, i.e. a classical multiple source

traceroute approach and the distributed Doubletree collaborative algorithm aimed at being

deployed at a large-scale level. Basic features of the framework not only allow it to characterize

according to a relevant classification method unknown input AS-level topologies but also extend

its realism by enabling an underlying router-level topology to be additionally specified. The

implemented network discovery processes can then executed inside the simulated network by

taking into account performance considerations, such as memory consumption, since such large-

scale simulations can lead to time and memory hungry applications. The design of detailed

router-level node discovery distribution and a inter-level link discovery matrix analysis also

gives the user an upper-hand on, for instance, which internal, peering or provider-customer

links have been discovered in any part of the network, or what amount of load has been applied

to individual levels or edges throughout the probing process.

Using the designed tools, the elaborate Doubletree algorithm is then subjected to an in-depth

analysis of its performance at discovering a large-scale AS-level topology. Following the observation

that such simulations were costly and that blindly choosing tests to optimise their performance

would be a difficult task and suboptimal solution, the generation of statistically optimal plans

for the discovery process’s modelling was considered and described, although regretfully set

aside after the identification of unresolvable issues in the given amount of time. However, a

series of specific tests were designed and deployed during a two-month period in order to attempt

to optimise coverage results by making the most of the benefits of operating inside a simulated

framework and accordingly developed tools. Heuristics are therefore sought after evaluating

several source and destination influences on the discovery process while being based on the

topology’s inferred AS-level hierarchy. These evaluations are then carried further through the

simulation of source clustering and destination capping techniques which are also shown to

provide efficient ways of probing the network in an even more friendly-manner.

7

CHAPTER 1 : Introduction

1.4 Thesis organization

• Chapter 2 provides some background for understanding the contributions made in the

thesis, with a top-down description of Internet topology, routing policy concepts and

available information sources for topology discovery.

• Chapter 3 describes related work regarding traditional active probing schemes, the

network-friendly Doubletree algorithm, and their respective limitations.

• Chapter 4 explains the design choices and further details the implementation used for

the simulations.

• Chapter 5 elaborates on the objectives initially set out by the thesis and identifies ways

to reach them. The description of the performed tests is given with their results.

• Chapter 6 summarizes the thesis’s results and contributions and gives further directions

in which to develop the study.

8

Chapter 2

Background

This chapter provides a top-down overview of Internet topology discovery through the two main

views that characterize it: the AS-level and IP-level topologies. The importance of knowing

the latter is further shown by the description of crossing-level methods. Internet routing policy

concepts are then covered in support of the summary of the alternative information sources,

leaving aside the main source for topology information, namely active probing, for the following

chapter.

2.1 Internet topology overview

In a communications network, network topology is the pattern of interconnection between nodes.

The Internet has different types of network topology, most of which can be organized by level

of granularity. Four distinct levels are commonly made besides the general distinction; starting

at the highest these are: AS-level, PoP-level, router-level and interface-level.

This section describes these levels in a top-down fashion, the information sources available for

their study, the difficulties in acquiring their respective topologies, the current state of knowledge

about them, and finally the ways in which they relate.

2.1.1 AS-level topology

An autonomous system (AS) is either a single network or a group of networks that is under the

control of a single administrative entity, typically an Internet service provider or a very large

organization (e.g. a university, a business enterprise or division) with independent connections

to multiple networks. An AS is also sometimes referred to as a routing domain. Each AS is

identified by a unique 16-bit number assigned by IANA.

9

CHAPTER 2 : Background

This section describes the relationships observed between ASs and their impact on routing. It

also details the evolution of AS topology discovery, the methods used for inferring it and the

analysis made about its structure.

AS relationships

In the Internet AS topology graph, an edge between two ASs (nodes) represents a business

relationship or policy which results in the exchange of Internet traffic between them. An AS

can have one or more relationships with different kinds of neighbouring ASs. Each relationship

may correspond to several distinct physical links.

On one side, an AS’s access links connect to customer networks. Customer networks buy

Internet connectivity from the AS. On the other hand, peering links connect to transit providers

and private peers with whom exchange of traffic is negotiated in order to obtain better connectivity

to them and their customers. As a consequence, no transit traffic is allowed through peering

links except traffic with the peer or its customers. These are the most observed relationships in

the network and are usually referred to as the provider-to-customer (p2c), customer-to-provider

(c2p) and peer-to-peer (p2p) relationships.

A less common relationship found in the Internet is called the sibling-to-sibling (s2s) relationship.

This relationship generally resides between two ASs of a same company. The key difference with

peering is that siblings exchange all kinds of traffic, not only between their respective customers.

An s2s relationship covers everything except the p2c, c2p and p2p relationships. It can appear

in various cases such as, when two ASs act as backups for each other, or when two ISPs merge

and decide to become siblings instead of merging into a single AS which can be very complex.

Two peering ISPs have a special agreement for specific prefixes for which they transit all kinds

of traffic for each other.

These relationships have a major impact on routing in the Internet as shown by a study from

Tangmunarunkit et al. [35]. Inside an AS, routing uses hop-count as a metric, but because

intra-domain protocols support hierarchies, the resulting paths are not always the shortest in

terms of hop-distance. Between ASs, routing is determined by policy. Many Internet path

lengths thus may also benefit from a detour [36, 37] which would incur more router-level hops

than shortest-router-hop path routing. For simulation purposes, it is therefore most appropriate

to model the network with policy-based routing rather than AS shortest path-based routing.

10

Section 2.1 : Internet topology overview

Level N

Level N-1

AS1 AS2

AS3 AS4 AS5
S2S P2P

C2P P2Cno transit

Figure 2.1: Relationships between ASs

Inferring an AS-level topology

In the absence of a global registry, the first AS-level structures were inferred from publicly

available BGP table dumps like those at Oregon Route-Views [38], RIPE-NCC [39] and RouteServer

[40]. Early research assumed that two ASs were linked if their AS numbers were adjacent in

an AS path. Gao and Rexford [41] then made a substantial advance by noticing customer-to-

provider links create a hierarchy. Gao [11] went on to identify the peer-to-peer and sibling-to-

sibling relationships.

Inferring these relationships is a problem of its own. In his study, Gao [11] first tackled the

problem by developing an inference mechanism which extracts information from BGP tables

and summarized the valley-free1 property of AS paths. Subramanian et al. [42] formulated

AS relationship assignment as an optimisation problem, Type of Relationship (ToR) problem.

Battista et al. [43] proved its NP-completeness and presented an approximately optimal solution.

Gao and Xia [44] then evaluated the accuracy of these algorithms and improved them by

introducing techniques on inferring relations from partial information. This improvement was

possible thanks to the study of Bonaventure and Quoitin [45] which show that uses of the BGP

community attribute indicate relationships amongst ASs.

AS hierarchy

ASs in the topology may differ according to the role which they address. They can vary in size,

type and number of relationships they have with their neighbours. Such differences have lead to

various informal definitions of AS hierarchy. The most common is known as the tier hierarchy.

1After traversing a provider-to-customer or a peer-to-peer edge, the AS path cannot traverse a customer-to-

provider or peer-to-peer edge. In other words, an AS does not provide transit between any two of its providers

or peers.

11

CHAPTER 2 : Background

Level 0 - dense core

Level 1 - transit core

Level 2 - outer core

Level 3 - small ISPs

Level 4 - customers

Figure 2.2: AS hierarchy

In [42], Subramanian et al. propose a 5-level classification of

ASs based on a previously inferred topology graph. Typically,

a customer should be at a lower-level than its provider(s).

The algorithm detailed in the authors’ paper is applied to

a directed graph to discover the belonging of ASs to the

hierarchy represented by Figure 2.2.

It identifies a clique2 of tier-1 ISP networks, which are the largest network providers and which

compose the core of the inter-AS topology. A tier-1 network must therefore peer with every

other tier-1 network. Tier-2 networks, many of which are regional network providers, peer with

some networks but purchase transit in order to reach at least some portion of the Internet. Far

away from the core are the stub networks that are the leaves in the topology, meaning they

solely purchase transit from other networks to reach the Internet.

A first attempt to classify the AS topology was performed by Govindan and Reddy [46] and

based on node degree; ASs with a large number of neighbours are placed above ASs with small

node degree. However, a simple degree-based approach does not capture the essence of the tiers

in the hierarchy.

2.1.2 IP-level topology

As shown in Figure 2.3, an AS is composed of a collection of routers that are interconnected.

Routers are decision-making entities composed of multiple interfaces. An interface is a router’s

attachment to a link, e.g. an Ethernet interface. A link is a communication medium offered by

the underlying link-layer3 protocol over which the main Internet Protocol (IP) may transmit

packets, e.g. an Ethernet network.

Links between routers belonging to the same AS are called core links. Links between routers

of different ASs are known as edge links. A router ending an edge link is a border router.

Remaining routers inside the AS are its core or internal routers.

IP-level topology is therefore often referred to as both interface-level and router-level topologies.

2A clique is a fully connected subgraph, meaning everyone in the clique interacts with every one else.
3These point-to-point links may not be point-to-point beneath IP: a layer-2 switch or other multiple-access

medium may be used.

12

Section 2.1 : Internet topology overview

Internal routers
 and links

Peering links

Access links

POP

POP POP

POP

Border routers

Figure 2.3: Detailed topology of an AS

Methods for inferring an interface-level topology are typically based on hop-limited probing, i.e.

traceroutes, sent from one or more locations, and are the matter of the next chapter. A router-

level topology is then inferred from the interface-level topology, while the only yet significant

issue separating them is the one of assigning interfaces to routers, known as the alias resolution

problem, and is further described in Section 2.1.3.

A point of presence (PoP) is a collection of routers owned by an AS in a specific location

(city or suburb). This distinction can lead to an intermediate topology, i.e. the PoP-level

topology, which can be produced by adding information about geographic location to the inter-

AS topology. Different ASs also sometimes have routers in the same building, such places

are known as a co-location facilities or exchange points. An analysis at this level is useful for

understanding the geographic properties of Internet paths, e.g. it can provide constraints about

latency between two PoPs.

IP overview and addressing

IP [47] is the network-layer protocol used by the Internet. Currently IPv4 is mostly used, but

a growing number of nodes and networks also implement IPv6 [48]. The routing behaviour of

IPv4 and IPv6 are very similar, as are the routing architectures and topologies used within the

two protocols; thus in the context of this thesis, it will simply be referred to it as ”IP” since

most of what follows is applicable indifferently to either protocol.

Interfaces are assigned IP addresses. In IPv4 an interface usually has one IP address, while in

IPv6 an interface typically has more than one address assigned to it. IPv4 addresses are 32 bits

13

CHAPTER 2 : Background

long and are written in ”dotted-quad” decimal notation, such as 130.104.1.233. IPv6 addresses

are 128 bits long and are written in colon-separated hexadecimal notation, such as 2006:075:4::1

(where :: is the abbreviation of two or more consecutive groups of zeros).

Since IP addresses are difficult to remember, many hosts have associated names to them. The

Domain Name System (DNS) [49] handles the mapping of these names to IP addresses and vice

versa. Domain names are maintained in a hierarchical tree structure stored in a distributed

database. A DNS query is then typically sent to a local name server which, if the answer is not

available in cache, forwards it to one of several DNS root servers at the top of the tree. These

servers maintain an authoritative list of DNS servers responsible for top-level domains, (such as

.org), which in turn delegate responsibility for individual domain names, (such as traceroute),

which in turn answer the queries for IP addresses of their subdomains or hosts (such as www).

IP routing

IP provides the transport layer with best-effort, connectionless delivery of a packet from one

node to any other node (or set of nodes in the case of multicast) in the Internet, regardless of

network topology or underlying link-layer technologies used.

If a packet is sent to a destination which is not on the same link as the source, it will traverse

one or more routers on the way to its destination. Every router typically maintains a routing

table which holds, for every destination, the address of the next router and outgoing interface

through which to send the incoming packet. When receiving a packet on an interface, routers

consult their routing table and send the packet to the next router or to the destination. This is

known as destination-based routing. As a consequence, the path taken by a packet is unknown

at the time of sending but is independently determined by each router along the way. Note that

source-based routing, which consists in specifying a list of routers a packet should traverse, is

inbuilt within IP although most routers discard such packets because of security issues.

These routing tables can either be configured manually, which is feasible for small networks

or, most coomonly, generated automatically and handled by routing protocols which propagate

information on how to reach destinations in the network. The functioning of these protocols is

further detailed in Section 2.2.

Address prefixes

In order to minimize the size of routing tables, IP addresses are gathered in contiguous blocks

of addresses known as prefixes. All addresses with the same prefix have their first n bits in

14

Section 2.1 : Internet topology overview

common, where n is the prefix length. A common notation for a prefix is the first address of the

prefix followed by a slash and the prefix length, such as 130.104.0.0/16 for an IPv4 prefix. In

the early days of the IPv4 architecture, addresses were divided into classes according to where

they were located in the address space and prefixes were 8, 16 or 24 bits long according to the

class of addresses they contained. Prefix length is no longer constrained to these values since

the introduction of Classless Inter-Domain Routing (CIDR) [50].

When looking up a destination in the forwarding table, more than one prefix may match; in

this case the entry for the longest prefix is used. At the top of the table is a default route, the

entry to use when no other entry is matched. The default route is associated with the prefix

0.0.0.0/0, which is the least-specific prefix possible: any other matching prefix will override this

default route by virtue of being more specific.

2.1.3 Crossing the levels

From interface-level to router-level

In order to infer a router-level map from IP paths, a means must be found to assign interfaces

to routers. This problem is known in literature as resolving aliases. It has received recent

attention as Gunes and Sarac [51] underline that alias resolution is an important yet often

overlooked component of the traceroute-based Internet map construction process. Consider

the following example in Figure 2.4 in which various interfaces are joined by IP links. The

assignment of interfaces C1 and C2 to different routers significantly changes the topology as

additional router-level nodes and links appear.

A1

B1

C1

C2

C3

D1

A1

B1

C1

C2

D1

C3

C4

Figure 2.4: Alias resolution : assigning interfaces to routers

Such inaccuracies may indeed lead to the appearance of non-existing links or disappearance of

existing links in the sample topology. This would quite possibly have an impact on the results

of papers such as [52, 13] having used the resulting maps.

15

CHAPTER 2 : Background

Several approaches currently exist for alias resolution:

• Address based method: this method consists of probing several interfaces of a suspected

router in order to make it reply with an ICMP [53] error message. Certain implementations

of ICMP error reporting reply using as source the IP address of the router interface

that is on the shortest path back to the initial probe source. Their comparison can

thus determine that they belong to the same router although other implementations or

alternative configurations may alter that router’s behaviour, e.g. an administrator can

configure a router to ignore probes directed to them. Mercator [54] and Iffinder [55] are

well known tools using this address based method.

• IP identification based method: when an IP packet is generated, the kernel puts

a 16-bit value into its IP identification field, typically implemented as a monotonically

increasing counter. This can be used to ascertain if ICMP error messages are coming

from a same router after being sent to different IP addresses. Rocketfuel’s Ally tool uses

this approach as well as complementary techniques not described here such as TTL value

comparison.

• DNS based method: this method is based on similarities in router host names and

works when an AS uses a systematic naming scheme for assigning IP addresses to router

interfaces. This method is especially interesting as it can work even if a router does not

respond to probes directed to itself. Ally uses this technique against unresponsive routers

with the help of the undns tool [56].

• Graph based method: this method extracts from traceroute outputs a graph of linked

IP addresses in order to infer likely and unlikely aliases as described by Spring in [57].

It is based on two assumptions: (1) if two IP addresses precede a common successor IP

address, then they are likely to be alias, and (2) two addresses found in a same traceroute

are unlikely to be alias. This method is mainly used as a preprocessing step to reduce the

number of probe pairs for an active probe approach.

• Analytical Alias Resolver (AAR) method: Gunes and Sarac [51] recently presented

a graph theoretic formulation of the alias resolution problem and developed the AAR

algorithm to solve it. Given a set of path traces, the algorithm utilizes the common IP

address assignment scheme to infer IP aliases from the collected path traces.

16

Section 2.1 : Internet topology overview

From interface-level to PoP-level

The pioneering work of Rocketfuel [58] provided techniques for inferring detailed PoP-level

topologies using traceroutes; IP addresses appearing in traceroute paths are mapped to their

corresponding PoP by performing reverse DNS lookups. In later work, Teixeira et al. [52]

found that inferred topologies had significantly higher path diversity4 and they suspected that

the large number of false links were due to imperfect alias resolution5. However this could not

explain the false PoP-level edges. Recent developments in [59] show DNS misnamings to be a

major source of these false edges and offer ways to fix them.

From interface-level to AS-level

Jamin and co-authors [7] showed that many existing links do not actually appear in BGP.

Fortunately, BGP tables are not the only source for AS-level topology information. Active

probing results, from tools such as CAIDA’s Skitter, can also be used. IP addresses gathered in

IP paths can be mapped to AS numbers by using, for example, BGP table dumps or Internet

registry data. Broido et al. [60] reports that the obtained topology differs to BGP inferred

ones in that it has much denser inter-AS connectivity. It is also richer because it is capable of

exposing multiple points of contact between ASs, this is in contrast to BGP table dumps which

only provide information on whether two ASs peer or not.

Chang et al. [7] proposed a means to identify border routers of an AS, but this is not a trivial

problem. Indeed, the IP addresses of a border router might either belong to its own AS, to

the AS of a peer, or to that of a third party such as an Internet eXchange Point (IXP) whose

core is typically composed of one or several Ethernet switches. Following the example shown in

Figure 2.5, AS1, AS2 and AS3 are all connected to an IXP with one of their router’s interfaces

being part of the IXP’s subnet. However, both AS2 and AS3 have dotted peering links with

AS4 and of which the end-point addresses could well belong to the latter’s address range.

Mapping IP addresses to AS number is not as simple as it may seem. WHOIS data is often

incomplete and out of date, while approaches based on BGP table dumps also have significant

limitations. A common problem is the origination of a same prefix by multiple ASs (MOAS).

Zhao et al. [61] showed that the number of conflicts is not trivial (the median value in 2001

was 1294 conflicts).

4Distinct number of AS paths that exist between an AS and the rest of the Internet
5Task of identifying and grouping the IP addresses belonging to the same router. see Section 2.1.3 for further

details

17

CHAPTER 2 : Background

1.0.0.0 /8

2.0.0.0 /8 3.0.0.0 /8
5.0.0.0 /8

4.0.0.0 /8

AS1

AS2 AS3

AS4

P2P

P2C

Figure 2.5: Border routers of peering ASes at an Internet exchange point (IXP)

An IP-to-AS mapping study by Mao et al. [62] identified that 10% of traceroute paths contained

one or more hops that did not map to a single AS number. Furthermore, mapping IP addresses

to AS numbers paths resulted in loops in the inferred AS-path for about 15% of the node-level

paths examined. Loops not being permitted by BGP and this indicates an error in mapping.

The authors improved accuracy by proposing heuristics comparing BGP-derived AS paths

against traceroute-derived AS paths and by performing reverse DNS lookups. The heuristics,

though effective, are labour-intensive and mostly ad hoc; in [63] the same authors improved on

this result and proposed a systematic way to perform the same tasks using dynamic programming

and iterative improvement.

Although these topologies inferred from various sources present substantial differences, their

comparison in [10] seems to have underlined fundamental characteristics of the network, such

as its joint degree distribution6. However, the question of which most closely matches the actual

Internet AS topology remains open; these methodologies appear to be quantitatively but not

qualitatively different although each one approximates a different view of the Internet looking

at the data (Skitter), control (BGP), and management (WHOIS) planes.

6else known as node degree correlation matrix can be summarized as being its average neighbor connectivity.

18

Section 2.2 : Internet routing policy concepts

2.2 Internet routing policy concepts

Routing in the Internet is carried out by routers, each one using its forwarding table to determine

on which link a packet should be forwarded. Manually maintaining these forwarding tables

would be an impossible task. Fortunately, routing protocols are used to determine how packets

traverse the different levels of Internet topology. They do so by exchanging information about

the state of the network and deciding which paths to use to reach every destination.

The primary role of a routing protocol is link failure detection and avoidance. In addition, it

allows preferences for different paths to be expressed by operators, shaping the way traffic flows

through a topology. These paths can be preferred because they are cheaper, less utilized or

more reliable. These preferences make up what is known as routing policy.

2.2.1 Inter-AS routing with BGP

Routing protocol basics

The routing protocol used in the Internet to communicate between ASs is the Border Gateway

Protocol (BGP) [64, 2]. BGP behaves like a distance vector routing protocol: it tells its

neighbours the length of the best path to reach each prefix. A router maintains a routing

table in which it stores forwarding table information but in which it includes each path’s length.

Each router then sends a copy of this table to all of its neighbours. Each routing table is then

updated with the available information from its neighbours; routes that are no longer available

are removed and new shortest path routes are chosen.

In BGP, this information is exchanged between peers7 by using messages known as updates. An

update can either be an announcement which advertises a prefix, or a withdrawal which warns

that a prefix has become unreachable.

BGP is however a variant of distance vector routing, namely path vector routing. Instead of

exchanging path lengths and incrementing them, routers send each other whole paths and add

themselves to a path before propagating it. This ordered list, the AS-path, constitutes one of

the main attributes of a BGP announcement.

7Routers are said to be BGP peers if they exchange BGP routing information between them. A distinction is

made between iBGP peers belonging to a same AS or eBGP peers belonging to different ASs.

19

CHAPTER 2 : Background

BGP route propagation

Typically, a prefix announcement is first made by its origin AS, the AS to which the prefix

belongs. Routers in the origin AS announce the prefix to their peers with an empty AS-path.

The announcement is then propagated from AS to AS, or not, depending on each AS’s policy.

Each router maintains the latest route received from each peer in its routing table, also known

as Routing Information Base (RIB). In the event of a prefix update received from a peer, the

peer’s route is updated and the best route to the prefix is recalculated. If the best route changes,

the router announces it to its peers according to its routing policy. If the last known route to

a prefix is removed, the router sends a withdrawal to its peers.

When a route is propagated to another AS, the current AS number is prepended to, i.e. added

to the front of, the AS-path: the AS-path lists the ASs that a given announcement has traversed.

This is used to avoid looping and for path selection: the shortest AS-path to a prefix is chosen

as its best route, excluding local policy decisions. This is the route used to forward traffic for

the given prefix: traffic is sent to the first AS in the AS-path. Traffic to the prefix therefore

flows along the AS-path in the opposite direction to its advertisements.

BGP routing policy enforcement

If several paths for a prefix are accepted from different neighbour ASs, BGP can be used

internally to choose the appropriate path according to local policies. Its choice can be influenced

using the local-pref parameter which allows an AS to rank routes in any order. This parameter

can be defined for specific or groups of routes, e.g.. all routes announced by a particular

neighbour. Common practice is to first choose routes from customer ASs, then from peer ASs.

If neither have the sought route, a provider is chosen as last resort.

Another BGP attribute that can be used for applying policies is the community attribute

which provides a way of grouping destinations to which routing decisions (such as acceptance,

preference, and redistribution) can be applied. As opposed to the local preference attribute,

a community stays attached to routes announced to other ASs. According to studies in the

literature [45], a common utilization of the attribute is to affect the down-hill distribution of a

route, thus enabling cross-AS policy coordination. Another is the tagging of incoming routes at

all border routers which enables routing by all AS routers to be performed mainly on the basis of

these communities. The idea is that, for example, customers with specific policies that require

the modification of local policies in a provider network, set the corresponding community values

in their routing updates.

20

Section 2.2 : Internet routing policy concepts

While stub ASs mainly need to select among its access links to find the one to reach a given

prefix, transit ASs need to care about the distribution of traffic inside their AS as well as among

their inter-AS links. When a transit AS has multiple peering points with a destination AS, it

typically has two available approaches for choosing the router-level path used to reach it:

• early-exit or hot-potato routing is the default and consists in choosing the closest peering

point to the destination AS.

• late-exit or cold-potato routing consists in choosing the peering point closest to the destination.

Although BGP information about internal topology is hidden, an AS can export Multi-

Exit Discriminators (MEDs) to provide an order of preference for the different available

peering points. However MEDs use is optional and therefore requires cooperation from

both ASs to work.

Routing policies are the main cause of asymmetric routing in the Internet which means that

paths used by packets on the way to their destination often differ to those in the opposite

direction. This observation was first made by Paxson [65] upon data from 1995 and confirmed

with data from 2002 by Amini et al. [66] that a considerable amount of paths in the Internet

are asymmetric: most recently almost 70%. Asymmetric routing also varies according to which

type of ASs are dealt with as He et al. [67] show that asymmetry is far more common between

commercial networks than academic networks.

2.2.2 Intra-AS routing

In contrast to BGP used between distinct ASs, an Interior Gateway Protocol (IGP) is used

inside an AS to choose paths within its own network. Typical IGPs like OSPF and IS-IS, use

link state routing which consists in exchanging parts of the topology so that each router can

assemble and obtain a globally-consistent view of the network. Path choice is then carried out

based on complete knowledge of the topology.

Links are individually assigned a weight or cost on which the routing protocol relies to select

the paths having the least cost, i.e. smallest sum of the weights of the links. Link cost can

be modified in order to encourage or discourage its use, for example in case of congestion or

unreliable conditions. As new information is sent through the network, inconsistent states may

inject transient faults.

Some ASs explicitly determine the path between each pair of routers through the use of the

Multi-Protocol Label Switching (MPLS). With MPLS, a label is assigned to a packet that enters

21

CHAPTER 2 : Background

the network. Further routers make their forwarding decisions based on this label or on other

fields in the packet, but not solely according to the packet’s destination. This can cause trouble

in network mapping as discussed in Section 3.1.3.

2.3 Alternative topology information sources

Several sources of Internet topology data are available and three of them have been predominantly

used in recent years: Internet registries, BGP routing information, and active probing techniques

such as traceroute measurements. This section describes the first two along with their advantages

and limitations. Active probing is more thoroughly covered by the next chapter.

2.3.1 Routing registry information

Many publicly-available registries share information about the Internet and its topology. Regional

Internet Registries [9] are organisations responsible for allocating AS numbers and IP address

blocks, all of which are accessible using the WHOIS protocol. Internet Routing Registry (IRR)

is another group of databases maintained by several organisations and containing documented

routing policies. These policies are also available through the WHOIS protocol and are expressed

in Routing Policy Specification Language (RPSL [68]).

Topology discovery using Internet registry information has several advantages. Firstly, they

are simpler and more efficient to implement than active probing methods since they do not

have to explore the network to obtain the topology and because information is grouped at

specific locations. Secondly, they provide high-level information such as routing policies which

are otherwise more difficult to obtain.

This information source also has limitations mainly due to the fact that they are based on

data provided by ISPs and not based on the real state of the network. Firstly, the provided

information is often incomplete for various reasons such as confidentiality and administrative

overhead. Secondly, as shown in RIPE consistency check reports [69] registry data quality is

questionable and often inconsistent as information about a same object in one registry overlaps

and sometimes even contradicts information in other registries. Thirdly, due to their inherent

nature, these registries are not able to precisely reflect the actual state of routing in the network.

For example, it can not determine whether portions of the Internet are reachable or not, or

whether backup links exist and are being used, etc. These limitations are the reason why

current work has tended to focus on other information sources for topology discovery. Having

said that, routing registries are still a useful source of information when combined.

22

Section 2.3 : Alternative topology information sources

2.3.2 BGP routing information

As opposed to link-state protocols such as OSPF[70] or IS-IS[71], BGP does not maintain any

unified view of the network. Each BGP router chooses its best path for a specific destination

which it propagates to its neighbours, leading to an individual view of the network for each

router. This view depends on factors such as the choices made by its neighbours, such as the

order in which it received their announcements, etc. This distributed nature calls for the use

of information gathering methods in order to obtain the most complete common view of the

topology.

Common BGP information sources are looking glasses and route servers [72]. A looking glass

is a web interface to a BGP router which usually allows BGP data querying and limited use of

debugging tools such as ping or traceroute. A route server is a BGP router offering interactive

login access permitting to run most non-privileged router commands. Both are usually made

public to help network operators in their debugging tasks, but they can also provide BGP

information to properly crafted network discovery tools. A list of accessible looking glasses and

route servers is available at [73].

A second source of BGP information is BGP dumps. Projects such as RouteViews [38] or RIPE-

NCC [39] provide collected information from BGP routers around the world. Route collectors

are deployed in various locations and peer with BGP routers from multiple ASs. They then

periodically save snapshots of their state, known as table dumps, along with all routing updates

received between the preceding and current snapshot, known as update traces.

There are several advantages to topology discovery methods based on BGP routing. Firstly, like

routing registries, data has been gathered and is available at specific places. There is therefore

no need to deploy an infrastructure for exploring the network. Secondly, unlike routing registry

data, provided information by BGP corresponds to the actual state of the network, even though

it only provides local views of it. Finally, BGP update traces further allows dynamic behaviour

analysis such as backup link detection.

The disadvantages of using BGP traces is that, firstly, they do not reveal any information

about router-level topology information of the Internet. Secondly, they require a non-trivial

infrastructure for update collection and storage. Thirdly, they seem to provide a less complete

picture of interdomain routing as for example using node-probing, confirmed by studies such as

Broido et al.’s [60].

23

CHAPTER 2 : Background

24

Chapter 3

Active probing and related work

This chapter covers the active probing class of topology discovery methods and the manners in

which they are currently deployed. Inherent limitations of active measurements are explained in

addition to the problems encountered by their existing implementations. A summary of current

issues then paves the way to the description of a needed larger-scale distributed discovery system,

namely Doubletree, which will be the object of simulation and analysis in the following chapters.

3.1 Classic approach to active measurements

Active probing is the third class of topology discovery methods which consists of deducing

network topology from the behaviour of the network itself. A primitive approach is to use

debugging facilities of network protocols such as IP. For example, in an IPv4 header, the source

routing option can be used to specify a list of routers traversed by a packet, but such packets

are often dropped by Internet routers as there are security implications and inter-AS policies

could be breached. The record-route option allows a packet’s path to be progressively stored

by each router in the option data field, but this is limited to nine addresses, which is quite

insufficient for discovering large networks such as the Internet. In addition, most routers also

filter out packets with this option enabled.

Another protocol has revealed itself to be far more useful: the Internet Control Message Protocol

(ICMP [74] and ICMPv6 [75]). It provides simple debugging features such as sending echo

requests and receiving echo reply messages. These messages are typically used by the ping tool

to discover if a node is present on the network and to measure the round-trip time (RTT)

of the packet. Other ICMP functionalities such as subnet mask requests [76] could provide

supplementary information sources but are also often discarded by administrative control.

Given the limited availability of helpful debugging facilities, the classic approach has been to

25

CHAPTER 3 : Active probing and related work

design tools sending specially crafted probe packets throughout the network in order to collect

and analyse error messages sent back in response. The best-known example is the traceroute

tool [77] which is described in the following section and which has been used by several projects

worldwide in similar topology discovery quests. These projects’ implementations are discussed

along with their limitations partly due to the classic approach they take.

3.1.1 Traceroute tool

Traceroute is a simple and popular tool proposed and first implemented by Jacobson [77] at

the Lawrence Berkeley National Laboratory in 1989. Traceroute returns the path taken by

packets sent to a particular IP address. It does so by using the time-to-live (TTL) field of an

IPv4 header or the hop limit equivalent of an IPv6 header. These fields are meant to prevent

routing loops which would otherwise lead to infinite forwarding of packets, potentially reducing

the network to a crawl. When a packet is sent, the TTL field is given an initial value which is

decreased by one every time it is forwarded by a router and eventually dropped when its value

reaches zero. This ensures that the packet will be dropped once the maximum number of hops

is reached. The router that discards the packet returns an ICMP time exceeded message to the

packet source, thus unveiling its IP address.

The traceroute process starts by sending a packet to a given destination with a TTL equal to 1.

The first router reached by the packet will then discard it and reply by a time exceeded packet

showing in its source field one of the router’s IP addresses. This IP address corresponds to

the interface on which the reply packet was sent, most probably the interface through which

the traceroute source address is routed. An IP address of the first router is thus known, but

not necessarily the destination address of the probe packets. Traceroute then sends a packet

with a TTL of 2 to the same destination, discovers an IP address of the second router, and so

on. The probing ends when the maximum number of hops is reached or when a reply indicates

the destination has been reached. An example of a traceroute output is given in Figure 3.1.

Its output shows up as a list of IP addresses belonging to routers which responded to the

probe packets at each TTL with their response times. Note that this list is not necessarily the

path taken by all (or, indeed, any one of) the packets, because each probe packet is routed

independently and routing changes may occur while traceroute is running.

Several features have since then been added and modified to measure more properties [78, 79, 80].

TCPTraceroute [81] is for example a traceroute implementation that uses TCP packets instead

of UDP or ICMP packets to send its probes. It can be used in situations where a firewall

blocks ICMP and UDP traffic. It is based on the ”half-open scanning” technique that is used

by NMAP, sending a TCP with the SYN flag set and waiting for a SYN/ACK (which indicates

that something is listening on this port for connections). When it receives a response, the

26

Section 3.1 : Classic approach to active measurements

1 kirby-FE4-13.cac.washington.edu (140.142.15.225) 0 ms 0 ms 0 ms

2 uwbr-ads-01-vl1998.cac.washington.edu (140.142.155.23) 1 ms 1 ms 0 ms

3 hnsp2-wes-ge-0-0-0-0.pnw-gigapop.net (209.124.176.12) 1 ms 1 ms 1 ms

4 abilene-pnw.pnw-gigapop.net (209.124.179.2) 1 ms 1 ms 1 ms

5 dnvrng-sttlng.abilene.ucaid.edu (198.32.8.50) 26 ms 26 ms 26 ms

6 kscyng-dnvrng.abilene.ucaid.edu (198.32.8.14) 40 ms 47 ms 41 ms

7 iplsng-kscyng.abilene.ucaid.edu (198.32.8.80) 47 ms 47 ms 46 ms

8 chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 50 ms 50 ms 50 ms

9 nycmng-chinng.abilene.ucaid.edu (198.32.8.83) 74 ms 73 ms 69 ms

10 198.32.11.51 (198.32.11.51) 70 ms 70 ms 70 ms

11 so-7-0-0.rt1.ams.nl.geant2.net (62.40.112.133) 153 ms 153 ms 153 ms

12 belnet-gw.rt1.ams.nl.geant2.net (62.40.124.162) 156 ms 157 ms 160 ms

13 oc192.m160.core.science.belnet.net (193.191.1.1) 157 ms 156 ms 157 ms

14 oc48.m20.access.lln.belnet.net (193.191.1.198) 157 ms 157 ms 157 ms

15 ucl-1.customer.lln.belnet.net (193.191.11.10) 157 ms 157 ms 157 ms

16 CsPythagore.sri.ucl.ac.be (130.104.254.238) 158 ms 164 ms 158 ms

17 CsHalles.sri.ucl.ac.be (130.104.254.201) 158 ms 158 ms 158 ms

Table 3.1: Traceroute from the University of Washington to the Catholic University of Louvain

TCPTraceroute program sends a packet with a RST flag to close the connection.

Another traceroute derivative is the NANOG[82] traceroute is derived from the original traceroute

program, but adds a few features such as AS (Autonomous System) number lookup, and

detection of ToS (Type-of-Service) changes along the path.

Traceroute explorations may be performed using packets other than ICMP echo requests, such as

UDP packets. In this case, a UDP packet is sent to a destination host at a specific destination

port. If this destination port is unused, the host will reply with an ICMP port unreachable

message whose source address is once again the address of one of the host’s interfaces. An

important implication of this behaviour is that it allows the probing host to infer that the

return message’s source and the traceroute destination belong to the same router.

27

CHAPTER 3 : Active probing and related work

3.1.2 Existing discovery systems

Initial topology discovery systems, such as Mercator [54], based on hop-limited probing methods

sent probes out from a single location. Probing in such a way is likely to result in a tree-like

topology and will tend to miss out ”cross-links”, i.e. traversal branches. Subsequent work

therefore adopted multiple source approaches, in which multiple probing sources are used.

Quite like looking glasses, a large number of public traceroute servers have been made available

and can be found at [73]. Initially their use was mainly intended for debugging purposes but

they can also be used by topology discovery tools, although their web interfaces sometimes lack

convenience. An example of such a platform is PlanetLab [83] which has currently 694 machines

hosted on 335 different sites which provides a network testbed for many active research projects

of all kinds, covering file sharing, content distribution networks, QoS overlays, anomaly detection

mechanisms, and network measurement tools. An implementation making use of PlanetLab is

Scriptroute [56] aimed at providing traceroute servers’ accessibility but with the flexibility of

running a variety of measurement tools.

Other approaches have deployed their own measurement infrastructure, like the well-known

Skitter [12] project of CAIDA which has between 20 and 30 available monitors1 world-wide

providing traffic measurements services for researchers. The Active Measurement Project

(AMP) [84] of the National Laboratory for Applied Network Research (NLANR), although

recently terminated in July 2006, took a slightly different approach by letting 150 monitors,

mainly deployed in the United States, probe each other in a full mesh in order to obtain

dense coverage of the underlying network. Another project, Rocketfuel [58], concentrates on

discovering the internal topologies of ISPs.

A more recent trend has been to move towards a more distributed system as demonstrated by

a project like DIMES [85] from the Tel-Aviv University. DIMES relies on the distribution of

small portable agents to the community, in a similar spirit to ones such as SETI@home, which

perform typical traceroute and ping probes around the globe.

1A ”monitor” is the common name for an active probing node as opposed to a passive destination node

28

Section 3.1 : Classic approach to active measurements

Mercator

Mercator was introduced by Govindan and Tangmunarunkit in [54]. It explores the network

from a single location by using hop-limited probes to determine paths and infer a topology.

Although a single source may seem restrictive, they use source routing as a means to increase

discovery coverage. Once a router allowing source routing is found, which was surprisingly the

case for 8% of their probed routers (i.e. nearly 10.000 routers), it provides the capacity to probe

the network from another location, thus providing new ”virtual sources”.

Mercator implemented a heuristic approach named informed random address probing which

explores the IP address space more efficiently than exhaustive probing and without requiring

input. It starts off from a seed prefix and then probes randomly chosen prefixes adjacent to

previously encountered prefixes which are maintained in a list by the probing host. This assumes

Internet registries sequentially allocate address spaces. A primitive approach for determining

prefix lengths was hazardously performed according to primitive IP address classes [47].

Another point is that Mercator additionally conducts a check before probing the path to a new

address of a given prefix: if paths to an address of the same prefix are known, Mercator starts

probing at the highest hop count for a responding router seen on those paths. Despite this

heuristic’s proposal, no results were published about its performance.

Skitter

CAIDA’s Skitter [12] is a topology discovery system that performs hop-limited probes from a

certain number of large servers strategically placed in the Internet, some of which are DNS root

servers. Similar alias resolution techniques to Mercator’s were implemented in their iffinder

tool developed by Ken Keys, but probed addresses are not chosen randomly anymore. Instead,

probed addresses are specified by a predefined list generated using several data sources, e.g.

web server and DNS root server client lists, and by selecting one IP address for every prefix

announced in BGP.

The predefined list is constantly updated and periodically probed: Skitter makes results available

to researchers at each end of probing cycle being the time to finish probing its destination list.

Skitter data has been used for many purposes since 1998, e.g. visualizing network AS-level

network connectivity, evaluating the quality of data provided by traceroutes [86].

29

CHAPTER 3 : Active probing and related work

Rocketfuel

Rocketfuel [58] is a tool developed by Neil Spring et al. which aims at building a detailed map

of an individual ISP’s topology by employing some 800 traceroute servers to gather as much

topological information possible with the minimal amount of measurement and without relying

on confidential information. They use several heuristics for identifying router aliases, including

DNS naming, time-to-live, IP identification field, and instances of rate limiting triggered by

earlier probes.

Unnecessary traceroutes that are likely to follow redundant paths through the ISP network

are suppressed by using BGP routing information. By selecting only traceroutes likely to

transit the network, this heuristic is able to reduce the number of measurements by three

orders of magnitude compared to an all-to-all approach. The IP identification field is used as a

pioneering method for alias resolution, as explained in Section 2.1.3. Geographical information

from DNS naming is used to divide the router-level topology into POP-level backbone and

access components.

Results were validated by authors by asking ten different ISPs to evaluate the discovered

topologies and to compare them to previously discovered ones by systems such as RouteViews

and Skitter. Their detailed analysis resulted in the discovery of seven times more links than

previously inferred maps.

DIMES

DIMES is a ongoing distributed scientific research project launched in September 2004, aimed

to study the structure and topology of the Internet, with the help of a volunteer community.

The DIMES agent performs Internet measurements such as traceroute and ping at a low rate,

consuming at peak 1KB/S. Since then more than 10000 agents have been registered at their

website (www.netdimes.org) and the most current result analysis available was performed on

2005 data [87] when the system was composed of 5000 agents located in over 570 different ASs.

The results lead to a map of about 61000 AS edges connecting over 15000 AS nodes. Out of these

edges, almost half are not present in BGP table repositories such as RouteViews, thus making

the Internet 50% denser than previously observed, although unfortunately no comparison with

Skitter was performed. In addition, the project is working on means to identify non-responding

hosts not identifiable by traceroute-like measurements, although they are known to exist.

30

Section 3.1 : Classic approach to active measurements

3.1.3 Limitations and issues

Although active probing methods have key advantages, they have their own share of limitations

due to inherent inaccuracies of hop-limited probes. Implementation and network load issues are

also prone to arise, particularly when a distributed infrastructure is needed.

Speed

Classic traceroutes are slow as they have to progressively probe through each hop in order to

reach a given destination. Backward probing which consists in probing with a maximum hop

and gradually working its way back to the source was proposed by [54]. More recent Moors’ [88]

evaluates a method for sending a scout packet to the destination and examining its response

packet’s TTL in order to guess the original TTL (typically one of a few standard values). These

methods have been shown to work well, despite not working when a destination does not reply,

which is more common than an isolated mishap.

Inherent inaccuracies

Even though hop-limited probes are a very useful tool, they have their drawbacks. One

immediate limitation is the fact these probes only discover forward paths towards a given

destination, although reverse paths may differ because prefix-based routing policies and hot-

potato routing can cause asymmetry. Asymmetric routing also stops inference being made on

the link delay between two consecutive hops from the reported round-trip times: the difference

between the RTTs could be due to the link, or to one of the routers using a different return

path. A way to partially circumvent this issue is to perform a mesh measurement as carried

out by AMP [84].

As evaluated by Teixera et al. [89], a second limitation is that active probes can potentially

follow several paths in the event of failure or due to load balancing amongst equal paths, and

that such path diversity especially appears in the core levels of the network. As a result, probes

tend to follow primary paths and thus miss out on backup paths if an insufficient number of

probes or undersized time-window is provided.

A third limitation is that the path reported by a tool like traceroute is potentially a non-

existing path for a packet to traverse. Although unlikely to be a completely false path, load-

balancing and route changes can cause spurious links to appear in the resulting output. This is

a consequence of the non-atomic way paths are determined and a danger of many such discovery

tools is to pretend to be atomic when they are not. Moreover, when in this context we talk of

links, we are not talking of IP links between two end-point IP interfaces; traceroute only reports

31

CHAPTER 3 : Active probing and related work

the address of one of the interfaces of a given link, the one belonging further away from the

source. This weakness can be partially addressed by using a ping with the record route option

set, but it is unable to provide information about routers more than 8 hops away.

A fourth problem can occur inside an AS internally using MPLS (see Section 2.2.2) which gives

it the ability to hide the underlying topology by disabling the TTL used by traceroute. Routers

using MPLS may be configured either to decrement the TTL, as traceroute requires, or to

ignore the TTL field: because the switched paths of MPLS are configured to have no loops,

the IP TTL is not needed. The MPLS specification, however, recommends that the TTL be

decremented where possible [90].

Lastly, active measurements are at the mercy of inconsistent behaviour from networked elements:

misconfigurations sometimes lead to private non-routable addresses appearing in intermediaries,

non-RFC complying implementations cause different interfaces to respond depending on their

router’s vendor, and strict debug policies or firewalls prevent some probed routers from responding.

Spatial bias

A natural question that arises is how many measurement points are necessary in order to obtain

good coverage of the Internet, or at least its backbone. The problem was addressed by Barford

et al. [91] who studied the marginal utility of probe sources by examining Skitter traceroutes.

They show that indeed by adding more vantage points, new links are revealed, and that the

marginal utility of adding more sources rapidly decreases. On the other hand, the marginal

utility of adding destinations is much higher, with an almost linear increase of the number of

discovered nodes with the number of added destinations.

Another point is that these findings show that, for instance, in presence of a dozen vantage

points, although there is only a small advantage in adding a few more, there is still a significant

advantage to add thousands of points as they will add a significant percentage of new links.

Furthermore, using a small number of such points gives a strong bias in the topology towards

customer-provider links while missing many peer-to-peer links.

This issue is actually part of a broader one, relevant to the Faloutsos brothers’ findings [24] in

1999 which showed that the degree distribution of nodes in the Internet followed a heavy-tailed2

distribution. They used AS- and router-level Internet topologies to show that power laws can

be used to characterize this node degree distribution. Broido and Claffy [60] further went on

2A heavy-tailed distribution is one where high-degree nodes appear with a higher probability than would be

expected in a standard random graph

32

Section 3.1 : Classic approach to active measurements

to show that Weibull distribution can be used to approximate the outdegree distribution of

the routers. While some analysed the difficulties in sampling methodologies [92] and others

questioned the validity of using degree distribution as the main metric for characterizing the

Internet topology [93], Lakhina et al. pointed out how such sampling biases be caused by the

use of a small number of sources [13]. Indeed, they show empirically how the subgraph formed

by a collection of shortest-paths from a small set of random sources to a larger set of random

sources can easily appear to show a degree distribution remarkably like a power-law. Recent

results from Clauset and Moors [94, 14] confirm the sampling bias after having systematically

studied it for a very general class of underlying degree distributions.

Network load

Consequently, these seemingly biased observations are making the case for a highly distributed

measurement system, but not at any cost. Actual Internet topology knowledge could highly

benefit from such an infrastructure with thousands of measurement points spread around the

globe, but if carelessly deployed, could impose an unnecessary load on network ressources.

Donnet et al. [17] analysed this issue and distinguished two types of redundant measurements

carried out by a multiple source system using traceroute-like probing mechanisms.

• Intra-monitor redundancy is redundant measurements made by an individual monitor,

i.e. probe source, and appears near each monitor as probes will tend to cover close

interfaces several times. In a large-scale system, the degree of such redundancy could be

very high as a nearby interface could be visited for each probed destination.

• Inter-monitor redundancy is redundant work carried out by different monitors and

takes place closer to destinations. Such redundancy can also potentially be quite large as

it would be expected to grow linearly with the number of monitors.

Although some attention in previous work had been paid to minimize the number of traceroutes

performed, many current discovery systems naively carry out traditional active probing or try

to maintain reasonable load on ressources by reducing their tools’ performance. In addition to

imposing additional load on internal nodes and links of the network, redundant measurements

can also appear to destination nodes as DDoS attacks since probes would be received from a

large number of different sources.

33

CHAPTER 3 : Active probing and related work

3.1.4 Summary evaluation of current active probing systems

The discovery of network topology actively using probe packets has many advantages. Not

only does it provide up-to-date and relatively reliable information, it is the only method

for discovering interface- and router-level topologies of the global Internet. The discovered

topologies may not be complete, but this is also the case with other methods described in the

previous chapter.

The main drawback of active probing is the necessary time taken to obtain a snapshot of the

topology: on one hand, the accuracy and flexibility of topology discovery using probe packets

makes it extremely useful for targeted explorations such as those performed by Rocketfuel. On

the other, mapping a large network like the Internet requires several days or weeks of probing,

during which significant network changes can take place and seriously affect results. Employing

measurement systems that use a larger number of monitors can help this issue, as well as reduce

observed sampling biases. Indeed, while more monitors probe the same space, each one can take

a smaller portion and probe it more frequently. Network dynamics such as routing changes that

might be missed by smaller systems could be more readily captured by the larger ones while

keeping the workload per monitor constant.

Another difficulty with active probing is the inconvenience of having to deploy a measurement

infrastructure or interact with public traceroute servers. This issue has however been addressed

by DIMES which has managed to deploy thousands of light-weight measurement agents and

which offers an insight into future measurement systems.

In the meantime, issues of deploying a large-scale network-friendly measurement systems have

been partly addressed by Donnet et al. [17]. Following their observations about redundant

measurements in a typical active probing system, they proposed an elegant solution described

hereafter, i.e. the Doubletree algorithm, which attempts to minimize network usage and avoid

overloading destinations while keeping a high level of node and link coverage. Unfortunately,

this solution requires collaboration between monitors at the cost of a communication overhead.

34

Section 3.2 : Doubletree

3.2 Doubletree

The Doubletree algorithm [17], which is part of the Traceroute@home [95] project, is the first

attempt to efficiently perform large scale topology discovery in a network-friendly manner

through co-operation between monitors. Methods to reduce communication overhead caused

by this approach have also been proposed by the same authors in [96] and in [97] through the

use of Bloom filters [98] and CIDR address prefixing [99]. Heuristics, for further increasing

coverage are under proposal [100, 101] as well as effectiveness by creating clusters of monitors

and capping the number of times a destination gets probed, are a matter of discussion as they

are still being investigated.

3.2.1 Discovery process using trees

A tree can be used by a probing algorithm to keep track of its discovery progress. The rule is

that probing is carried out from the leaves to the root, i.e. decreasing probe packet TTLs, as

long as it is probing a previously unknown part of the tree. It then stops when a previously

discovered node is encountered. The assumption is made that the remaining path to the root

is known, leading to potential coverage loss. Note that, in the context of Internet topology,

discovering a new node would correspond to a router’s interface responding to a probe packet

within the constraints previously described in Section 3.1.3.

Doubletree tackles both types of redundancy described in Section 3.1.3 and is based on the tree-

like structure of routes emanating from a single source or converging on a same destination.

For this reason, Doubletree uses two trees, one monitor-rooted and one destination-rooted trees,

as illustrated by Figure 3.1. The monitor-rooted tree is composed of outgoing routes from a

single monitor to multiple destinations. The destination-rooted tree is composed of routes from

multiple monitors converging to a common destination.

The stopping rule based on the former aims at reducing intra-monitor redundancy, and the

latter which requires inter-monitor communication in order to reduce their shared redundancy.

3.2.2 Two-phase probing

Doubletree acts in two phases:

1. Forward probing proceeds from an initial hop count h to h+1, h+2, and so forth, applying

a stopping rule based on the destination-rooted tree.

2. Backward probing then follows by taking the hop count back to h-1, h-2, etc., applying a

stopping rule based on the monitor-rooted tree.

35

CHAPTER 3 : Active probing and related work

Figure 3.1: Monitor-rooted and destination-rooted trees from [17]

During the backward probing phase, once the root or stopping rule is reached, the algorithm

moves on to the next destination and restarts probing at initial distance h. In the special case

where there is no response at a certain distance, this distance is halved, and halved again until

there is a reply. Probing then continues forwards and backwards from that point.

3.2.3 Stop sets and simple stopping rule

Rather than maintaining information about the tree structure, it is sufficient for the stopping

rules to store sets of (interface,root) pairs, the root being the root of the tree in question, i.e.

the monitor- or destination-based tree. These sets are called stop sets. A single monitor uses

two distinct stop sets:

• The first stop set is used when probing forwards and is called the global stop set.

• The second stop set is used when probing backwards and is called the local stop set. This

set can be reduced to a list of interfaces since the root item never changes as it is the

monitor itself.

The stopping rule for each phase is simple: it is to stop when the encountered pair is already a

member of the relevant set, otherwise it is added.

3.2.4 The Doubletree algorithm

Algorithm 1 is the formal definition of Doubletree and assumes the existence of two functions:

• response() returns true if an interface replies to at least one probe sent to it.

• halt() returns true if probing must be stopped for various reasons. These reasons include

the detection of a loop or the observation of a gap in the case of a non-responding interface.

36

Section 3.2 : Doubletree

Algorithm 1 Doubletree
Require: F, the global stop set received by this monitor.

Ensure: F updated with all (interface,destination) pairs discovered by this monitor.

1: procedure Doubletree(h, D)

2: B ← ∅ . local stop set

3: for all d ∈ D do . destinations

4: h← AdaptHValue(h) . initial hop

5: TraceForwards(h, d)

6: TraceBackwards(h− 1, d)

7: end for

8: end procedure

9: procedure AdaptHValue(h)

10: while ¬response(vh) ∧ h 6= 1 do . vh the interface discovered at h hops

11: h← h/2 . h an integer

12: end while

13: return h

14: end procedure

15: procedure TraceForwards(i,d)

16: while vi 6= d ∧ (vi, d) /∈ F ∧ ¬halt() do

17: F ← F ∪ (vi, d)

18: i + +

19: end while

20: end procedure

21: procedure TraceBackwards(i,d)

22: while i ≥ 1 ∧ vi /∈ B ∧ ¬halt() do

23: B ← B ∪ vi

24: F ← F ∪ (vi, d)

25: i−−
26: end while

27: end procedure

37

CHAPTER 3 : Active probing and related work

3.2.5 Choice of initial distance

In order for a monitor to avoid excess intra-monitor redundancy by probing too close and excess

inter-monitor redundancy by probing too far, Doubletree starts off at what is hoped to be an

intermediate point h between the monitor and the given destination. Each monitor having a

different location in the network, a reasonable value for h is to be determined for each one.

A choice for h is typically based on the distribution of path lengths as seen individually from

the perspective of each monitor. One easily estimated parameter by a monitor is its probability

p of hitting a responding destination on the first probe. By fixing p, the individually obtained

values of h correspond to a similar level of incursion of each monitor in the network.

Note that choosing an initial distance can only be done for responding destinations and can

thus use quicker ways to evaluate this initial distance is by using previously described solutions

such as Moors’ [88]. This is also the technique mentioned by a study concentrating on single

source route tracing [102].

3.2.6 Inter-monitor communication load and Bloom filters

Keeping basic knowledge about previously discovered nodes in the network does not require

sharing their whole sets of (interface, destination) pairs. Bloom filters [98] are bit vectors that

can be used to encode such membership. An empty Bloom filter is a vector of all zeros. A key

is registered in the filter by hashing it to a position in the vector and setting the bit at that

position to one. Multiple hash functions may be used, setting several bits to one. Membership

is then verified if all hash positions are set to one.

A Bloom filter will never falsely return a negative result for set membership, but might return a

false positive. The size of the filter and number of hash functions can influence its performance.

The risk in using them is thus limited to halting a forward probing scheme earlier than expected,

i.e. a positive membership answer for a yet undiscovered interface would comply with the

stopping rule.

This data structure was proposed by Doubletree papers [96] to share the global stop set

using Bloom filters as they would otherwise represents a significant communication overhead.

Variations exist such as Retouched Bloom Filters (RBF) [103] which is currently under review.

38

Section 3.2 : Doubletree

3.2.7 Advanced stopping rule using CIDR prefixes

In order to further reduce the load on destinations and communication overhead while maintaining

an acceptable level of accuracy, another study of Donnet et al. [104] proposed the use of stopping

based on CIDR prefixes [99]. Instead of storing the full IP address of destinations, the idea is to

agglomerate individual destination IP addresses into subnetworks with the use of CIDR address

prefixes, thus storing (interface, prefix) pairs in the global set instead of (interface,destination)

pairs.

Tests were performed using all prefix lengths from /8 to /24, as well as /28 and /32 (full IPv4

addresses). Results show a gradual improvement in performance, as expected, from the most

generic prefixes to the most specific. However, an interesting observation was that both node

and link coverage stabilized around prefix /24 reaching nearly the same accuracy as classic

Doubletree. The loss of accuracy seems to be mostly located in the subnetworks containing the

destinations and in the core network where duplicate links (and associated nodes) are missed

due to the prefix-based rule.

3.2.8 Capping and clustering

Additional ways of limiting the risk of DDoS attacks appearing at destinations were also

proposed in [96] which explains how Doubletree’s performance could perhaps be improved by

additional techniques such as:

1. limiting the number of monitors per destination (i.e. capping)

2. establishing clusters of monitors within which all have a common destination set, with no

overlapping destinations (i.e. clustering)

Capping is easily implemented by limiting the number of destination sets in which each destination

appears, assuring an upper-bound on the potential number of monitors hitting end nodes.

However optimal deployment of clusters remains obscure as many questions remain open, e.g.

how many clusters should be created, how to assign them their sources and destinations.

An original idea, shared by Doubletree’s author, would be to materialize the concept of proximity

between monitors, in other words find a means to quantify the difference between their views of

the network. By somehow comparing their individually discovered topologies, e.g. measuring

the Hamming distance3 between their local stop sets represented as Bloom filters, a new metric

could be defined opening up doors to the application of known clustering algorithms such as

K-means, PCA, Gauss-mixture, self-organizing maps or binary vector quantizers. An objective
3The Hamming distance between two vectors of equal size is the number of bits in which they differ

39

CHAPTER 3 : Active probing and related work

function can then be specified such as minimizing the similarity of monitors belonging to a same

cluster. Similar to evaluating the initial hop count of Doubletree algorithm, this would imply

a learning period during which each monitor would perform initial probing before sharing its

local stop set with a central coordinator responsible of determining appropriate clusters.

3.2.9 Evaluation

Doubletree authors’ showed how to deploy the algorithm in reality [105] as additional studies

have shown that the algorithm was deployable in reality [106]. Note that these results appeared

after the thesis’ aims had been set out. Performance evaluation difference between multiple

source traceroute and doubletree will therefore be summary in order to focus on discovery

heuristics.

40

Chapter 4

Design and implementation

This chapter covers the design choices leading to the implementation of the active discovery

simulation framework based on an appropriate network simulator. Simplifying hypotheses due

to its use are evaluated in regard to the behaviour of a real-life network. Requirements are then

set out and the resulting implementation is described per module.

4.1 Design choices

A large-scale Internet topology discovery infrastructure requires thorough testing and performance

evaluation before being deployed, otherwise one risks network overload and poor results. Being

able to realistically model the behaviour of a network is a difficult task as many aspects described

in the previous chapters have to be covered. The problem has typically been separated in two

issues: on one hand, network simulation has to capture the complexity of protocols used at the

different levels of the Internet, e.g. inter- and intra-domain routing. On the other hand, fictive

yet representative network topologies must also be provided to simulators in order to obtain a

functional model of real-world networks such as the Internet. The choice of network topologies

is a topic covered in the next chapter as it is not an implementation-specific matter.

4.1.1 Choice of a network simulation framework

Existing network simulation frameworks have been an ongoing research subject for years, giving

what can be mostly considered as full-protocol network emulators. Examples of which are:

BGP++ [107] which is a port of the Zebra BGP daemon [108] onto the popular NS-2 simulator

[109], SSFNET [110] or J-Sim [111]. Unfortunately the level of detail is a burden for large

topology simulations from a time and ressource consumption point of view. More recently, an

open-source C-BGP [18] solver tool provides an implementation of a complete BGP model while

not being hindered by the transmission of BGP messages over simulated TCP connections.

41

CHAPTER 4 : Design and implementation

C-BGP overview

Although the main use of this tool is currently to study interdomain traffic engineering techniques,

its ability to fully and efficiently support most notably IGP, eBGP and iBGP sessions and the

full BGP decision process, makes it the best contender for studying a router-level discovery

process influenced by high-level AS policies.

C-BGP takes a description of the network topology at IP layer 3, thus describing all present

routers, links connecting them and their configuration. This configuration includes the assignment

of IGP weight to all links, the BGP peerings of each router and the BGP policies enforced on

each peering. The solver then takes the BGP routes learned by all border routers and for

each router, i.e. border and internal, computes the routes towards all interdomain announced

prefixes. In order to facilitate the setup of large simulations, C-BGP can also load AS-level

interdomain topologies produced by the University of Berkeley.

C-BGP is written in the C programming language and is available on different platforms, from

which Linux has been chosen. Interaction with a C-BGP instance is performed through a

CISCO-like command-line interface. Several interfaces to programming languages are provided

for ease of use, i.e. Java, Python and Perl. The choice of Perl is made for interacting with the

C-BGP instance. A concrete example of a typical interaction is detailed in Appendix A.

Simplification hypotheses

Simulation implies making simplification hypotheses, as all the features and sometimes erratic

behaviour of Internet components cannot be efficiently reproduced. The following elements have

been identified:

• Alias resolution: in the C-BGP version used, routers are assimilated to a single node

and interface, i.e. one IP address. The problem of different interfaces responding to a

traceroute probe is therefore non-existent.

• Responsive routers: all reachable routers in C-BGP respond to probing as opposed

to routers in the Internet which may not do so for various reasons, e.g. unexpected link

failures or packet filtering. In addition this makes path length evaluation exact when

initially computing the initial hop value for Doubletree.

• Coherent configurations: a properly engineered topology avoids router misconfigurations

which can be observed in the real world, however, this does not prevent another study

from using C-BGP to, for example, analyze their impact.

42

Section 4.1 : Design choices

• Stable routing state: propagation of BGP messages across routers in C-BGP is done

in a static way until a stable routing state is reached, if it exists and is reachable1, only

then are simulations performed eliminating the appearance of routing anomalies such as

spurious links. All discovered paths in a probing process are therefore existing ones in the

topology.

Simulation benefits

Apart from being dispensed of unexpected behaviour, there are other benefits to performing

discovery processes in a simulated environment:

• Omniscience: complete knowledge of the interdomain topology and policies, as well

as their often unshared internal router topologies are available for deciding discovery

attributes, such as the placement of monitors in the network. After the discovery process,

exact knowledge of its performance can also be obtained, for instance, concerning node

and edge coverage or network load.

• Determinism: as opposed to previously cited discrete-event2 simulators, the message

propagation model of C-BGP relies on a single global linear queue which consequently

leads to the same outcome for any run. Multiple discoveries can therefore be performed

on exactly the same model, leaving the differences in their setup as the only reason for

obtaining varying results.

• Topology variation: an identical discovery process need not only to be tested on a single

model, it can be performed using different topologies which may have different properties.

4.1.2 Functional requirements

Here is a summary of the features required by the implementation:

• Network model: the implementation must allow efficient use of an internal model of the

network. This model is based on a given AS-level topology, with an optional and coherent

underlying router-level topology. Since AS-level routing policies have a significant impact

on probe paths (see Section 2.1.1), they should also be specified to avoid less representative

shortest-path routing.

• Node and edge classification: the model must allow the characterization of the

network’s nodes and edges, at both AS and router levels, to provide the means to appropriately

place monitors and obtain detailed location-based results once the discovery process is

over.
1BGP is indeed not assured of convergence, for further details please refer to Griffin and Wilfong’s [112]
2The outcome of a discrete-event simulator may depend on a pseudo-random number generator (PRNG) seed

43

CHAPTER 4 : Design and implementation

• Source and destination siting: this includes choosing the number of monitors and

destinations according to their location in the network while optionally applying to them

clustering methods and/or capping constraints.

• Discovery execution: the implementation must allow the choice between classic and

Doubletree discovery, as well as tuning their parameters, e.g. hit probability and number

of evaluation probes for determining initial hop, optional Bloom filter capacity and error

rate.

• Performance evaluation: adequate information must be provided in order to evaluate

the performance once a discovery has finished, such as detailed router-level node and link

coverage, number of used probes, etc. Optional storage of the monitors’ state could also

be of interest for further analysis.

• Modular implementation: the preceding requirements should be, as far as possible,

independently constructed for performance, validation and reusability purposes.

• Debugging feature: access to a debug option should also be proposed, for instance, to

provide highly detailed information about the individual steps performed by an implemented

probing algorithm.

4.2 Implementation

The preceding functional requirements naturally result in a modular implementation layout

which divides itself in three executable Perl scripts:

1. The classifyAS script is responsible for classifying an AS-level topology according to the

Subramanian hierarchy described in Section 2.1.1.

2. The setupDiscovery script is responsible for setting up a discovery process by generating

an XML file containing clusters, monitors and their respective destinations.

3. The performDiscovery script finally performs the discovery in coordination with the C-

BGP module provided on the tool’s website and computes performance figures.

In addition, three support modules, i.e. topology.pm, doubletree.pm and tools.pm, respectively

provide the scripts with access to the network topology model, discovery algorithms and generic

conversion tools. Note that the source code of scripts and modules is available in Appendix E.

44

Section 4.2 : Implementation

4.2.1 Discovery preparation

AS classification script

The role of the AS classification script is to classify a given AS-level topology and is invoked in

the following way:

./classifyAS <as_topology_file>

This script takes as input an AS topology file containing [as1 as2 relationship] entries with

relationship values −1, 0, 1 respectively standing for customer-provider, peering and provider-

customer relationships. A directed graph is created according to Subramanian’s method: a

provider-customer edge is represented by adding single directed edge from the first AS to the

second and conversely for a customer-provider edge. A peering relationship is represented by

two edges of opposite direction.

Note that sibling relationships are not included in this model. Indeed they are non-trivial

to accomodate in Subramanian’s framework because they not only lack the directionality of

customer-provider relationships, but also do not have the export policy constraints of peers.

However this should not significantly affect the overall accuracy of the model since sibling

relationships are uncommon compared to other peering relationships.

The Subramanian classification of ASs then takes place as follows:

• A first pass labels the leaves3 of the graph as customer ASs and removes them.

• A second pass applies a reverse pruning mechanism to recursively remove remaining leaves

until none are left and label them as small ISPs which are ASs providing one or more

customers.

• A third pass greedily classifies the dense core of the network by relaxing the definition

of a clique and identifying instead a subgraph of N nodes that each have an in-degree and

out-degree of at least N/2.

• A fourth pass greedily identifies the transit core defined as the smallest set of ASs

containing the dense core which induces a weak in-way cut, that is, one having a small

number of edges compared to the total number of ASs in the transit core.

• A final pass labels remaining ASs as part of the outer core.

3In a directed graph, a leaf is a node with out-degree 0. However in an undirected graph, a multi-homed

customer would not be considered a leaf as distinction between in-degree and out-degree could not be made.

45

CHAPTER 4 : Design and implementation

The script finishes by outputting the classification to <as_topology_file>.classification

in the following format [as num level] with level values from 0 to 4 respectively corresponding

to the dense core, transit core, outer core, small ISP and customer classifications.

Topology model module

This module provides both the setup and simulation modules with subroutines for configuring

the topology model, i.e. its AS-level and router-level graphs.

The first subroutine init asgraph has the role of reconstructing the classified AS graph previously

computed with the AS classification module. It does so by extracting node and link information

from the AS topology file, similarily to the previous module, and by labeling nodes using the

classification file. Furthermore, external modules can request the display of the AS topology’s

per-level distribution and inter-level connectivity. The following examples are based on the

AS-level topology further described in Section 5.1.4. Table 4.1 summerizes the number of ASs

at each level in the hierarchy.

dense transit outer ISPs customers

22 155 1336 1513 13921

Table 4.1: Per-level node distribution of an AS topology

Table 4.2 summarizes the connectivity between various levels in the AS hierarchy in what we

call the edge connectivity matrix of the AS topology. Each number in the table is the total

of edges from one level to another. In the inter-level connectivity table must be read from

left to right. For instance, dense core ASs have 208 peering edges towards4 transit ASs and

683 provider-customer edges towards transit ASs. Note that the underlined peering numbers

are symetrically sited around the diagonal figures. Indeed, one peering edge is assigned to

each AS since, in the AS graph, a peering relationship is represented by a double edge. As a

further consequence, provider-customer values also correspond to the number of relationships

between levels, whereas diagonal peering values must be halved in order to obtain the same

interpretation. Note that intermediate peering totals are not interpretable in such a way.

A second subroutine init rgraph can then be invoked in order to initialize an undirected router-

level graph. If the optional router-level topology, i.e. a C-BGP script as illustrated in Appendix

A, is specified, the module imports the specified routers and links and adds them to the graph.

4As opposed to ”with”

46

Section 4.2 : Implementation

level dense transit outer ISPs customers total (PP,PC)

dense 356,2 208,683 1,1774 0,1274 0,9071 565,12804

transit 208,4 726,647 76,2324 0,1118 0,6377 1010,10470

outer 1,0 76,11 1412,1137 0,796 0,5927 1489,7871

ISPs 0,0 0,0 0,0 0,438 0,4546 0,4984

customers 0,0 0,0 0,0 0,0 0,0 0,0

total (PP,PC) 565,6 1010,1341 1489,5235 0,3626 0,25921 3064,36129

Table 4.2: Inter-level peering and provider-customer edge connectivity matrix of the AS topology

If no router-level topology is specified, the module constructs the router-level graph by adding a

unique router for each AS present in the AS topology and by assigning it, according to a C-BGP

convention, the IP address equal to the domain’s number multiplied by 655365. Note that in

the model, an interface6 is identified by its 32-bit integer representation of its IP address. Links,

on the other hand, use a 64-bit big integer representation of their end IP addresses. Conversion

tools between the various formats are provided by the tools.pm module.

The identification of intra-AS links is then performed as well as the classification of border and

internal nodes; this is performed on-the-fly as it is a far less computation-intensive task than

the AS classification. The router-level topology’s per-level and per-type7 distribution and inter-

level connectivity matrix can both be displayed in a similar way to the AS topology connectivity

matrix.

Both tables differ in the fact they additionally distinguish internal links besides peering and

provider-customer ”links”. Note that the hypothesis is postulated that such a characterized

”link” between two routers is inherited from the relationship between their respective ASs. As

a consequence of the router-level topology’s undirectiveness as opposed to the AS topology,

a peering ”relationship” between routers is represented by a single edge/link in the router-

level graph. Peering values may thus appear halved on either side of the diagonal in order to

maintain easily interpretable the diagonal figures, and most importantly the bottom-right total.

The interpretation of inter-level peering links must therefore be made with caution.

5This correponds to a 16-bit left-shift of the 16-bit AS number. For example, the unique router representing

AS3 would be given the IP address 0.3.0.0
6In the context of these simulations, ”interface” and ”router” terms are interchangeable
7The terms levels and types respectively correspond to the node classification at the AS-level (dense, transit,

outer, ISP and customer) and at the router-level (border and internal)

47

CHAPTER 4 : Design and implementation

Discovery setup script

The role of the discovery setup script is to generate a configuration of sources and destinations

by taking into account optional capping constraints and/or clustering assignments.

./setupDiscovery [options] <as_topology_file>

The main options that can be specified at the script call are:

• Router-level topology (-r) file

• Number of sources (-s) per type and per level

• Number of destinations (-d) per type and per level

• Number of clusters (-n) in which to divide the sources

• Cap-limit (-c) specifying the number of sources probing the same destination

Note that in order to facilitate the passing of multiple-value arguments, the number of sources

and destinations are implemented as ”compulsory” options, i.e. the script will output an error

if they are not specified. For complete lists of the scripts’ available options, please refer to

Appendix D.

The setup script starts by initializing the topology model, thus calling the two topology initialization

subroutines of the topology module. It then randomly selects sources and destinations from the

router-level topology according to the specified per-level and per-type values. The selected

sources are stored in a container, selected destinations in another. The script then has four

ways of associating them to generate a discovery setup:

1. Independent destination set discovery is the default setting if no clustering or

capping is specified. The script randomly assigns destinations to the sources grouped

inside a single cluster. A specific destination therefore only appears in the individual

destination set of one source.

2. Clustered discovery occurs when only a number of clusters is specified. Sources are

then randomly distributed into clusters and destinations are randomly assigned to the

clusters’ common destination sets, as sources within a same cluster share the cluster’s

common destination set. Note that these common destination sets are also independent,

i.e. no destination appears in two different sets.

48

Section 4.2 : Implementation

3. Capped discovery occurs when only a cap-limit c is specified. In this case, each

destination is randomly assigned to c sources with all sources being assigned to a single

cluster.

4. Clustered and capped discovery occurs when both a cap-limit c and a number of

clusters are specified. In this case, sources and destinations are both randomly assigned

to clusters. Each destination is then randomly assigned to c of its cluster’s sources. Note

that while sources are distributed into clusters, they still use their individual destination

sets due to capping constraints.

Once the source and destination allocation process is over, the resulting data structure is

converted into an XML representation which is printed at the standard output by default or

optionally saved in a specified file using the export option. Note that its corresponding schema

discovery.xsd has been defined and is available in Appendix C followed by an example.

4.2.2 Discovery simulation

Discovery simulation script

The role of the discovery simulation script is to initialize the topology model and C-BGP

instance, import the previously generated discovery setup available as an XML file, execute the

chosen discovery algorithm (classic traceroute or Doubletree) and finally provide post-execution

information about its performance. The script is launched using the specification of the AS

topology and the XML discovery files:

./performDiscovery [options] <as_topology_file> <xml_discovery_file>

The main options that can be specified at the script call are:

• Router-level topology (-r) file

• Disable Doubletree (-t) perform classic traceroute discovery execution

• Number of path length evaluations (-h) for Doubletree initial hop

• Doubletree probability (-p) of hitting a destination on the first probe

• Bloom filter capacity (-c)

• Bloom filter error rate (-e)

• Disable use of Bloom filter (-n)

49

CHAPTER 4 : Design and implementation

The script starts off by initializing the topology model, as explained previously, and imports

the XML discovery setup into a data structure representing the global discovery system’s state.

The script then sets up a C-BGP instance with the help of the tools.pm module which

typically implements low-level subroutines used for tasks such as number format conversions,

file information extraction, initializing, setting up and checking the state of the C-BGP instance.

Once the instance is running and has been initialized with the specified AS-level or optional

router-level topology, the script launches the execution of the classic traceroute or Doubletree

algorithm to the algorithms.pm module. Once the discovery is over, the script is in charge of

computing performance results as further described in Section 4.2.3.

Discovery algorithms module

The discovery algorithms’ module contains the implementations of possible discovery schemes.

The module has three main subroutines, traceroute, compute hops and doubletree, to which

are passed the global discovery state and the topology model.

The classical discovery traceroute subroutine cycles through the set of clusters present in

the discovery hash. If a cluster has a common destination set, one prefix of /16 length8

per destination is propagated into the simulated network and traceroute requests from all the

cluster’s sources are then sent to the C-BGP instance. If no common destination set is available,

the subroutine first cycles on the sources and then on their individual destination sets.

If the C-BGP instance’s response has a successful status, each address in the route, apart from

the source address, is considered to have successfully responded to a probe and has thus been

discovered. In addition, each link leading to a responding interface is also considered to have

been successfully discovered.

Note that the router topology graph is actually vertex-counted and edge-counted meaning the

graph will count the number of times each node or link has been added to it. This can be used

to efficiently keep track of not only discovered interfaces and links, but also of the number of

times they were individually probed. This is why, once an interface successfully responds to a

probe during a discovery scheme, it is added again to the topology model, as well as the link

leading to it. Thus, once a discovery scheme is over, identifying nodes and links with a count

larger than 1 yields the discovered interfaces and links.

The compute hops subroutine relative to the Doubletree algorithm is in charge of evaluating

8If the destination router’s IP address is A.B.C.D, the announced prefix will be A.B.0.0/16. If needed, please

refer back to Section 2.1.2.

50

Section 4.2 : Implementation

the initial hop for each source in the discovery setup. It does so by selecting a specified number

of random destinations, from the source’s available common or individual set. It then performs

their traceroutes and uses the discovered path lengths to compute their cumulative distribution.

Choosing the initial hop count to ensure that there is the probability p of hitting a destination

on the first probe is then straightforward.

The Doubletree subroutine doubletree has a similar structure to the classical one, cycling

through clusters, then either through its common destination set if present, or else through its

sources. Ideally individual interface probes should then be performed, unfortunately C-BGP

does not provide this feature. Classic traceroute requests are thus performed and the difference

lies in the way they are handled by the subroutine.

In order to perform forward and backward probing, the global discovery state contains one global

set F per cluster and their sources’ local B sets. By default these are respectively implemented

as a Bloom filter and hashes, although global sets can also be stored as hashes if specified.

Forward and backward schemes then take place by considering that an interface is responding

at a specific hop count if it exists at that same index value in the response route. Note that,

when an interface is not responding and its hop value is larger than 1, then it is halved. Within

the context of the C-BGP environment, the only reason such a case might appear is if the

current hop is beyond the current destination.

4.2.3 Discovery performance evaluation

Once the discovery algorithm’s subroutine has finished, the discovery simulation script computes

performance figures based on the resulting global discovery state. By default, it computes and

outputs the following values:

• Global interface coverage: |PI∪S|
|TI| = |PI|+|S|−|PI∩S|

|TI|

• Global link coverage: |PL|
|TL|

such as S is the set of sources used for the discovery process, PI and PL are respectively the

sets of probed interfaces and probed links throughout the discovery, TI and TL are respectively

the sets of all interfaces and links of the topology.

Note that in order to obtain a correct computation of interface coverage, the removal of the

number of ”discovered” sources, i.e. |PI ∩ S|, is required before adding the known a priori

number of sources.

51

CHAPTER 4 : Design and implementation

In addition to these, detailed analysis provides the following values demonstrated as an example

in Table 4.3:

• Number of probed interfaces per type and per level: |PI ∩ TIt,l|

• Number of interface probes per type and per level:
∑

i∈PI probesi

• Interface coverage per type and per level: |PIt,l∪S|
|TIt,l| = |PIt,l|+|St,l|−|PIt,l∩St,l|

|TIt,l|

such as TIt,l is the set of interfaces from level l ∈ [0, 4] and of type t ∈ [0, 1], and probesi the

number of probes received by the interface i during probing.

level dense transit outer ISPs customers

coverage 0.909 0.774 0.315 0.382 0.358

probed 19 120 421 578 4991

probes 1309 2912 1816 1099 4991

Table 4.3: Per-level discovery distribution of router topology

Finally, the number of inter-level and intra-level links discovered is provided by another connectivity

matrix as shown by the example from Table 4.4. Its layout is similar to the inter-level table

previously described in Section 4.2.1.

level dense transit outer ISPs customers total (I,PP,PC)

dense 0,18,0 0,15.5,33 0,0,124 0,0,151 0,0,1642 0,33.5,1950

transit 0,15.5,0 0,8,50 0,0.5,202 0,0,188 0,0,1099 0,24,1539

outer 0,0,0 0,0.5,0 0,1,93 0,0,165 0,0,1283 0,1.5,1541

ISPs 0,0,0 0,0,0 0,0,0 0,0,74 0,0,967 0,0,1041

customers 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0

total (I,PP,PC) 0,33.5,0 0,24,83 0,1.5,419 0,0,578 0,0,4991 0,59,6071

Table 4.4: Discovered internal and inter-level link connectivity matrix of the router topology

Note that currently, all these figures give an evaluation of the interface/router-level topology

discovery. An evaluation of the AS-level discovery could however be implemented and is the

matter of a discussion in Section ??.

52

Section 4.2 : Implementation

C-BGP notes and modification

The first point is that C-BGP, performing a traceroute from a source router to a destination

router only requires the announcement of a prefix originating at the destination router, propagating

its route through the whole network. Although in reality a route back to the source has to be

available for the return packets, in C-BGP, only the forward path needs to be known as this is

the information returned by traceroute.

A second point is that C-BGP routers are fitted with data structures,i.e. a local and adjacent

RIBs, which are used to respectively store the best BGP routes and the routes exchanged with

neighbor routers. Several route announcements lead to the accumulation of information in these

structures and is the main reason for the C-BGP simulator’s memory consumption, especially

when dealing with large topologies. It was observed that although these data structures are

needed to compute the routers’ routing tables required by traceroute, there is no further need to

maintain them in memory once the forward path is returned. An additional clear-ribs command

was therefore implemented in the C-BGP simulator and is called after each completed prefix

propagation. The source code of this modification can be found in Appendix B.

53

CHAPTER 4 : Design and implementation

54

Chapter 5

Test design and results

This chapter elaborates on the objectives initially set out by the thesis and identifies ways to reach

them using the now-available discovery simulation framework. A test plan is then accordingly

laid out as well as the resulting choice of topologies on which to work. Finally, the test results

are presented along with their interpretation.

5.1 Test design

This part of the thesis has three main objectives: validate the previously described implementation,

analyse both algorithms’ (classic traceroute and Doubletree) performance in comparison with

previously obtained results and optimise their performance benefiting from the points described

in Section 4.1.1.

Although progressive testing has been carried throughout the development process, it is not

sufficient. Validation of the implementation must be performed in order to ensure correct

results. A formal approach being rather complicated to apply, the pragmatic approach of

providing debugging features is provided to this regard and provides human-readable output

of the many steps performed by a simulation. A detailed verification is thus performed on an

example covering the most possible1 input cases yet small enough to be hand-verifiable.

Once the validity of the process has been established, it could be interesting to see the results it

yields using a large-scale topology, which hypothetically could be more ”representative” of the

Internet. These results could be used to provide a more detailed analysis of the discovery process

than those available in the real-world, and thus enlighten previous work results or performance

claims.

1Testing all potential topologies is not possible.

55

CHAPTER 5 : Test design and results

The final objective is to identify the means to optimise Internet topology discovery through the

analysis of simulated results. These means including the development of heuristics, covered by

Section 5.1.1, such as the placement of monitors and destinations according to their location

in the network. A statistical approach to the problem is then described in Section 5.1.2 in an

attempt to apply optimal experimental planning methods to it. A test plan is ultimately laid

out according to the required features to be tested.

5.1.1 Identification of heuristics

Many heuristics have been elaborated and tested to improve the performance of router-level

network topology discovery through the development of tools such as Mercator [54] and Skitter

[12] which mainly concern the way an individual monitor independently probes the network.

Other studies have proposed collaboration between such monitors, notably leading to the

Doubletree algorithm [17] and its extensions, which may also be broadly considered as a form

of heuristic. In practice, the performance of these heuristics can be relatively well evaluated

according to the obtained results which is the main value sought to be maximized. However,

heuristics regarding placement in the Internet are far more difficult to evaluate due to limited

physical access reasons. Such heuristics can then realistically only be tested inside simulated

environments. To our best knowledge, no study has yet put forward heuristics regarding the

placement of active probing monitors and their destinations in the network.

Our network discovery simulation framework has a number of benefits, one of which is the

opportunity to freely choose monitors and destinations amongst all potential nodes of a topology.

The other is to know in advance the topology which is about to be discovered. This knowledge

can partly help in guiding placement, for instance, with graph algorithms based on specific

metrics. Such an example is Jamin’s [113] which proposes heuristics and algorithms for mirror

placement based on Jamin’s own performance metrics and evaluate their results using the Inet

topology generator [114]. In our case, graph metrics such as joint degree distribution (JDD)

or betweenness which have been shown by Mahadevan et al. [10] to play a central role in

determining a wide range of topological properties, could also be used as an informative way

of placing nodes in the network. However, we concentrate on analysing the impact of monitor

and destination location in the network based on the Subramanian 5-level AS classification.

56

Section 5.1 : Test design

5.1.2 Experimental planning approach

In contrast to a discovery’s preparation and evaluation, its simulation within our framework is

a costly issue from a time point of view. For instance, the C-BGP simulator takes in the region

of an hour to propagate 1000 prefixes, in a large AS-level topology composed of approximately

17000 ASs and 38000 relationships between them. As a consequence, it is not feasible to test

all combinatorial possibilities and choosing a subset of these possible experiments is therefore

compulsory. A formalisation of the process can help in such a task.

A process can be considered as a black-box function of one or several input variables, i.e.

qualitative2 or quantitative3 factors, resulting in one or several output variables, i.e. the

processed results. In our case, the discovery process is determined by the number of sources

and destinations for each level and router type if applicable4 and it yields two main results, i.e.

global router and link coverage defined in Section 4.2.3. Other results such as detailed coverage

or total number of used probes could also be considered.

To optimise a given process, statistical design tools are available to generate flexible and optimal

testing procedures. Their first step is to approximately sketch the process’s behaviour in order

to identify the most influential factors. Once these factors have been isolated, a statistical

model, i.e. linear, quadratic or higher-order term, is chosen to represent the process and is

often the result of a trade-off between:

• the process’s behaviour: a complex behaviour requires a complex model to describe it

precisely.

• the study’s needs: a higher-order model may be needed, but it requires many more

experiments for its analysis, On the other hand, complex models are not always easy to

understand and simplifying the model sometimes helps interpretation.

• the experiments’ cost: although both the process and study’s needs would require a

complete modelisation of the phenomenon, the cost of an individual experiment may be

very high and as a consequence may not allow a sufficient number of such experiments to

be carried out in order to meet model validation requirements.

2A qualitative variable is a non-numerically valued variable and can be placed into distinct categories.
3A quantitative variable is a numerically valued variable and can be ordered or ranked.
4If no underlying router-level topology is given, all routers are classified as border routers.

57

CHAPTER 5 : Test design and results

In these situations, statistical tools such as classic composite experimental plan designs are

available to generate test procedures with good statistical properties. Other optimal plan

designs such as the well-known D-optimal design provide the means to evaluate a plan’s quality

according to, in principle, any criteria. The D-criterium5 is however by far the most used for

its effectiveness and simplicity. It can notably take into account constraints that are imposed

on the experimental input variables so that the problem of designing mixture experiments6 can

also be tackled.

Such constraints could thus be considered in the case of the discovery process, as for instance,

taking into account the higher cost of deploying actively probing sources in contrast to tracing

passive destinations. Another constraint could consist in attributing a lower cost, thus higher

priority to discovering the core levels of the topology. Furthermore, discovery experiments could

be given mixture restrictions by setting the number of sources we are prepared to deploy and

obtain, as a result of the D-optimal design, a way to evaluate their optimised distribution in

the network. Indeed, once the resulting experimental plan has been put in place and has been

executed, standard regression analysis can be performed to determine, for instance, the model’s

empirical surface response and ultimately predict the input values to attain the best results.

This approach was deemed promising in the context of this thesis. Unfortunately, after concertation

and several meetings with the internal service of the Institute of Statistics (UCL), the outcome

was that an issue concerning the inputs’ domains was unresolvable in the given amount of

time; and according to the best knowledge of those involved, these statistical tools are indeed

applicable to both qualitative and quantitative variables, but only continuous7 variables as

opposed to discrete8 quantitative variables which is the case of our inputs. Nevertheless

a proposal was made to generate an experimental plan by stating continuous variables and

rounding the resulting input combinations in order to be fed into the simulator, but this was

discarded as statistical validity would have been compromised.

5consists of maximizing Fisher’s information matrix, which in turn maximizes the volume of the confidence

ellipsoid of the regression estimates of the linear model parameters.
6The challenge in a mixture experiment is to recognize and handle the inherent restriction that the sum of

the mixture components is always 100%.
7A quantitative variable whose possible values form some interval of numbers.
8A quantitative variable whose possible values form a finite (or countably infinite) set of numbers.

58

Section 5.1 : Test design

5.1.3 Effect tests layout

As a consequence of the unfruitful attempt to take up the powerful approach of experimental

planning, the combination of test inputs was chosen in order to analyse the following specific

effects:

1. the influence of the number of destinations

2. the influence of the number of sources

3. the influence of the location of sources

4. the influence of the location of destinations

5. the influence of clustering

6. the influence of capping

7. the influence of clustering with capping

5.1.4 Choice of topologies

Resulting from the network model requirements described in Section 4.1.2, topologies used for

the simulations must at least comply to the provision of a policy-based AS-level topology. For

further studies, an underlying router network can also specified in order to fully benefit from

the discovery framework’s potential.

As described in Section 2.1.1, the first available global network topologies were AS-level topologies

inferred from publicly available BGP table dumps and made available at repositories such as

Routeviews’ [115]. Similar approaches of relying on existing network topologies were made by

proposals such as Rocketfuel [58] which led to the first router-level topologies. However, Section

3.1.3 describes how such methods have their limitations as they are known to sometimes miss

multiple paths or infer non-existing links and routers.

The next approach consisted of generating synthetic topologies through the observed graph

properties of real networks. It was adopted by projects such as BRITE [116] and GT-ITM [117]

which are both able to produce router-level topologies. A final approach taken by Quoitin’s

IGen [30] has been to build topologies by taking into account network design objectives such as

latency minimization, link dimension and redundancy against possible failures.

59

CHAPTER 5 : Test design and results

Initial tests are performed on a small Internet-like topology9 setup with the help of IGen and

providing a small AS-level and router-level topology for exhaustive testing purposes.

The first larger-scale tests are performed on an AS-level topology inferred through Subramanian

and Agarwal’s previously described work [42] in Section 2.1.1, which is currently available from

C-BGP’s website10. If you wish to revisit this topology’s distribution of nodes and edges, please

respectively refer to Figures 4.1 and 4.2.

5.2 Tests and results

Validation tests covering a selection of setups and discoveries were performed and their details

are available in the appended material. Furthermore, the following tests which were set out in

different plans according to their objectives, also have their setups and results all available in

the appended material11.

Note that preparations are based on independent sources and their results are based on the

Doubletree algorithm without the use of Bloom filters to avoid adding unnecessary unknowns.

The main results are available in the appended material and are focused on the following values:

• Global node and link coverage

• Per-level node coverage

• Number of ”probes” received by all edges (equal to the sum of the following)

• Number of node probes received per-level

• Global Peering and Provider-Customer link coverage

9composed of 5 domains, one for each continent, whose routers were generated using a uniform distribution.

Each domain is divided in 10 PoPs using k-medoids, each one containing 2 backbone routers, the others being

access routers. Each access router is connected to the two backbone routers in its PoP and backbone routers in a

PoP are connected in full-mesh. Finally, all the backbone routers are connected using a Delaunay triangulation.
10at http://cbgp.info.ucl.ac.be/
11Supplied on CD-ROM

60

Section 5.2 : Tests and results

5.2.1 Standard deviation between repeated experiments

Before interpreting the results, an initial observation of standard deviation errors is performed

between repetitions of a same experiment. Since the outcome of a discovery process is deterministic

as described in Section 4.1.1, several inputs of identical parameters were fed to the preparation

module to generate similar yet randomly affected discovery setups of sources and destinations.

Between one and five repetitions were deployed according to the experiment’s resource usage.

When comparing most repetitions’ standard deviation relative to the experiment’s average,

observed results are consistently close to each other with an average deviation of 3% is observed

over all preceding values for preliminary experiments. A reasonable degree of confidence can

therefore be given to interpreting expensive and thus singly observed experiments although an

attentive eye must be kept on these deviations in the eventuality of unexpected issues.

5.2.2 Impact of source and destination placement

Influence of the location of a single source

The influence of the single source’s location was analysed by individually placing one source

node in the different network levels and probing towards the full range of stub destinations.

No difference according to the level’s source can be observed neither in the variation of global

interface and link coverage, nor in the peering and provider-customer coverage.

A first phenomenon is observable in Figure 5.1 which represents the total number of probes

imposed to the whole network when a source is respectively sited in one of the five bottom

levels. The coloured layers represent the value obtained through simulations using the specified

numbers of destinations. When a source is moved closer to the dense core, the total number of

probes is significantly reduced irrespective of the number of destinations and without affecting

the global coverage values. This is possibly due to the absence of an underlying router-level

topology although, intuitively, it seems a logical result as the dense core can be viewed as the

central point around which other layers evolve and are so more easily reachable. Interestingly

enough, probing load also slightly drops when a source belongs to the customer level when

compared to the ISP level.

61

CHAPTER 5 : Test design and results

Figure 5.1: Influence of the location of a source on the total number of probes

As shown in Figure 5.2, another tendency can be observed when plotting the individual level

coverage against an increasing number of destinations . When the set of destinations is small,

in the region of a hundred or a thousand, the proportion of knowledge about the dense and

transit core is far higher than with the other levels. This effect then tends to disappear with an

increasing number of destinations although the level 2 outer core becomes the least discovered.

Note that the global interface coverage closely follows the customer level’s evolution since its

proportion of nodes is far greater than others.

A more level-orientated view of the average number of probes received per-level is given in

Figure 5.3 which represents the number of probes to each level and according to different

destination setups. It can be observed that dense and transit core levels are almost as likely

to have their nodes probed by a single source compared to the outer core and ISP levels which

remain relatively unprobed. In the context of a single source discovery, this shows how biased

an active probing approach can be to discovering the topology. Although many nodes may be

discovered, they can represent a significant proportion of some levels and not others, thus not

being representative of the real topology.

62

Section 5.2 : Tests and results

Figure 5.2: Evolution of individual levels’ coverage with increasing number of destinations

Figure 5.3: Average number of probes received at each topology level from a single source

63

CHAPTER 5 : Test design and results

Figure 5.4: Evolution of levels’ node coverage with an increasing number of sources

Influence of the number of sources

The influence of the number of sources was analysed by increasing the number of sources

localized in the stub networks, i.e. customer level, in the presence of two large destinations

sets of respectively 5000 and 10000 destinations also located at the customer level.

An initial effect of increasing the number of sources can be seen on the evolution of individual

levels’ coverage in Figure 5.4. As expected they tend to go up, but in different manners. The

core level’s coverage is already at its maximum since the number of destinations is already quite

high and as previously explained by the earlier discovery of its nodes in a single source context.

A sharp increase of level 1 coverage happens when the first few sources are added whereas other

levels’ coverage stabilize at a similar level before increasing as the number of sources converges

with the number of destinations. Figure 5.5 offers a different view that can be observed in the

case of an initially higher destination count, i.e. respectively 5000 destinations for the former

and 10000 for the latter. Indeed, each level seems to stabilize rapidly.

A second effect is the noticeable difference in behaviour between the discovery of peering links

and provider-customer links. While the coverage in peering links seems to evolve more rapidly

at first, it then stabilizes as provider-customer links coverage increase more sharply. Note

that these coverage values may be deceptive, since peering links are far scarcer than provider-

customer links. A higher coverage increase may hence correspond to an identical increase in

absolute number or links.

64

Section 5.2 : Tests and results

Figure 5.5: Evolution of levels’ node coverage with an increasing number of sources

Influence of the location of multiple sources

The next step was to extend the single source case by analysing the results produced by the

location of multiple sources grouped in a specific level. Once again, this does not have a major

impact on the topology’s node or edge coverage although a slight advantage is given to sources

closer to the dense core as they discover 40% to 50% more peering links than the outer sources.

This is probably a result of the high number of peering relationships characterizing the dense

core. However, there is again confirmation of a significant decrease in the total number of

probes performed when the sources get closer to the dense core while keeping the same coverage

values. Additionally, higher variations appear in the probes’ cross-level distribution making it

less clearly draw a picture and thus complicating its interpretation.

If grouped sources do not have any influence, maybe a particular distribution of sources throughout

the levels may have. Tests therefore tried multiple possibilities for distributing 100 and 1000

sources across all five levels and were compared to previous experiments using the same number

of sources and destinations. The same result was observed for both: the best performing layout,

by a small margin, is one where all sources regroup as close to the dense core as possible.

65

CHAPTER 5 : Test design and results

Influence of the number and location of destinations

Since the location of sources did not appear to be very influential, the analysis of both the

number and location of destinations was carried out conjointly and deployed two reference sets

of 100 and 1000 stub sources respectively.

As a first result, the maximum coverage able to be completed by both sets towards all destinations

was 99.7%12 although link discovery peaks at 51.5% comprising 16.1% of peering edges and

52.4% of provider-customer edges.

A second result was that for the two simulations (and all their repetitions) which had all their

destinations located in either the ISP level or in the outer core level but with sources still in

the customer level; no probes were found to hit other customer level nodes as implied by the

AS classification algorithm implemented in the classification module described in 4.2.1.

5.2.3 Impact of clustering and capping

Influence of clustering

Table 5.1 shows the result of four simulations using 1000 sources probing to all possible destinations.

number of clusters interface coverage PP coverage PC coverage probes

5 100% 31.6% 90.8% 5243527

10 100% 28.1% 89.8% 2803478

50 100% 25.3% 84% 705406

100 100% 23.8% 79.1% 392802

Table 5.1: Performance results of 1000 clustered sources

Note that these clustered performances can not be compared to previous coverage results since

they generate s/n more destinations traces than from the single set, such as s is the number

of sources and n the number of clusters. This could however give an approximation of the

number of overall probes sent out. For instance, Simulation 17513, using 1000 sources with all

possible destinations distributed in their independent sets, should yield 1000/100 thus 10 times

12A few nodes have actually been missed despite the exhaustive approach and is supposedly due to incompatible

policies of the used topology. The precise cause could be identified but either requires re-performing the simulation

and activating the xml export option to identify the missing interfaces from the discovery state, or to display

debugging information which would display an unreachable destination error.
13refer to CD-ROM material for additional information

66

Section 5.2 : Tests and results

less traces than the fourth simulation from Table 5.1. It actually results in 61224 probes instead

of the estimated 40000 probes. The improvement made by inter-monitor collaboration would

account for this, although as previously stated, probe values’ interpretation must be made with

caution in the case of these large-scale topology discoveries.

Influence of capping

As the capping limit increases, so do the performance figures since more sources are able to probe

a given destination as shown by Table 5.2. The number of performed traces is implemented in

the setup script described in Section 4.2.1 to be equal c ∗ d, such as c is the cap limit and d the

number of destinations. The first simulation of Table 5.2 is thus similar to the last entry of 5.1

as they both carry out a total of 10000 traces.

cap limit interface coverage PP coverage PC coverage probes

10 100% 23.8% 79.3% 392660

5 100% 22.7% 72.6% 221568

3 100% 20.6% 66.7% 144136

1 100% 17.3% 51.9% 61305

Table 5.2: Performance results of 1000 sources with 1000 capped destinations

Note that, unfortunately, the full clustering with capping results are not available for analysis

because the needed simulations are still in progress at the time of writing.

5.2.4 Summary results

The placement of source and destination nodes in our simulated topology by using Subramanian’s

5-level classification has not revealed the existence of a new level-based heuristic for drastically

improving network topology coverage. However, access to the detailed proportions in which

nodes and edges are discovered helps realize the fundamental difficulties in discovering a complete

topology with peering links.

The inherent bias single sources display due to their tree-like explorations of the network needs

to be counter-balanced by the deployment of a larger number of sources. As seen through

the application of clustering and capping methods to existing collaborative methods such as

Doubletree, a distributed discovery process can yield excellent results compared to traditional

methods.

67

CHAPTER 5 : Test design and results

68

Chapter 6

Summary conclusions

A framework for active topology discovery analysis has been designed and operates within

an advanced network simulator. The design objectives have been achieved, and the basic

framework allows for further refinement of the process with the potential to adressing issues that

have emerged during this phase and future enhancements. Its features allow it to characterize

unknown AS-level topologies according to a relevant classification method, extend its realism by

enabling an underlying router-level topology to be specified and apply them the implemented

network discovery tools. The detailed router-level node and inter-level link discovery matrix

analysis can also be used to further evaluate their performance.

Several ideas of further work have appeared from the readings leading to the description of the

litterature and through the design of easily implementable extensions to the current framework.

From an implementation point of view, currently, tables of Section 4.2.3 give an evaluation of

the interface/router-level topology discovery although this evaluation of the AS-level discovery

could be performed in different ways. The first step would be to either infer the AS topology

based on existing methods, such as those described in Section 2.1.3, or to more simply consider

an AS as ”discovered” if at least one of its routers has been discovered. The latter requires

to make the hypothesis of being able to map every router to an AS which is not always the

case in the real-world. The second step would to compute a discovered connectivity matrix

based on the AS classification known a priori. The second way would be to compute that same

connectivity matrix based on the classification of the discovered topology. This could lead to

analysis of the induced bias described in Section 3.1.3 due to the small number of monitors.

In this regard, an option for exporting the global discovery state to a specified file has been

foreseen and thus allows the discovered router topology to be extracted for future use without

requiring a new discovery process.

69

CHAPTER 6 : Summary conclusions

A second extensions could be testing heuristics based on identified important graph characteristics

[10] such as betweenness which can be the object of an effective implementation based on

Brandes’ algorithm [118].

Having partly come to terms with the vastness of the Internet topology discovery topic, the

development of a functional and original framework based on state-of-the-art research has been

very enthusing especially when as application finally leads to coherent results, confirmation of

previous work and further contributing relevant facts and means. Although time and resource

constraints had an impact on some aspects of the original plan, the results demonstrate the

potential of the approach.

70

Bibliography

[1] E.C. Rosen. Vulnerabilities of network control protocols: An example. RFC 789, July

1981.

[2] Y. Rekhter. BGP Protocol Analysis. RFC 1265 (Informational), October 1991.

[3] D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS). RFC

3833 (Informational), August 2004.

[4] S. Murphy. BGP Security Vulnerabilities Analysis. RFC 4272 (Informational), January

2006.

[5] A. Retana, R. White, V. Fuller, and D. McPherson. Using 31-Bit Prefixes on IPv4 Point-

to-Point Links. RFC 3021 (Proposed Standard), December 2000.

[6] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771 (Draft Standard),

March 1995. Obsoleted by RFC 4271.

[7] H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. On inferring as-level

connectivity from bgp routing tables, 2001.

[8] David G. Andersen, Nick Feamster, and Hari Balakrishnan. Topology Inference from BGP

Routing Dynamics. In 2nd ACM SIGCOMM Internet Measurement Workshop, Boston,

MA, November 2002.

[9] Internet routing registries, http://www.irr.net/.

[10] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Bradley Huffaker, Xenofontas

Dimitropoulos, kc claffy, and Amin Vahdat. The internet as-level topology: Three data

sources and one definitive metric. ACM SIGCOMM COMPUTER COMMUNICATION

REVIEW, 36:2006, 2005.

[11] Lixin Gao. On inferring autonomous system relationships in the internet. IEEE/ACM

Trans. Networks, 9(6):733–745, 2001.

71

BIBLIOGRAPHY

[12] B. Huffaker, D. Plummer, D. Moore, and k claffy. Topology discovery by active probing,

2002.

[13] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling biases in IP topology

measurements. Boston University Computer Science, Tech. Rep. BUCS-TR-2002-021,

July 2002.

[14] Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On the bias

of traceroute sampling; or, power-law degree distributions in regular graphs. Mar 2005.

[15] Luca Dall’Asta, Ignacio Alvarez-Hamelin, Alain Barrat, Alexei Vázquez, and

Alessandro Vespignani. Exploring networks with traceroute-like probes: theory and

simulations. Theor. Comput. Sci., 355(1):6–24, 2006.

[16] M. Latapy L. Guillaume. Relevance of massively distributed explorations of the internet

topology: simulation results. 2005.

[17] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient algorithms for large-scale

topology discovery. In Proc. ACM SIGMETRICS, Banff, Canada, Jun. 2005. See also the

traceroute@home project: http://trhome.sourceforge.net.

[18] B. Quoitin and S. Uhlig. Modeling the routing of an autonomous system with C-BGP.

IEEE Network, vol. 19, no. 6, November 2005, 2005.

[19] R. Atkinson, S. Floyd, and Internet Architecture Board. IAB Concerns

and Recommendations Regarding Internet Research and Evolution. RFC 3869

(Informational), August 2004.

[20] D. MAGONI. Tearing down the internet. IEEE Journal on Selected Areas in

Communications, 21:949–960, August 2003.

[21] J. Li, M. Sung, J. Xu, and L. Li. Large-scale IP traceback in high-speed internet: Practical

techniques and theoretical foundation, 2004.

[22] W. Robertson C. Kruegel, D. Mutz and F. Valeur. Topology-based detection of anomalous

BGP messages. 6th Symposium on Recent Advances in Intrusion Detection Proceedings,

2003., 2003.

[23] A. Jin, S. Bestavros. Small-world characteristics of the internet and multicast scaling.

11th IEEE/ACM International Symposium, 2003., 2003.

[24] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships

of the internet topology. In SIGCOMM, pages 251–262, 1999.

72

BIBLIOGRAPHY

[25] J.-J. Pansiot D. Magoni. Analysis of the autonomous system network topology. ACM

SIGCOMM Computer Communication Review, 31(3):26 – 37, July 2001.

[26] H. Jeong S. H. Yook and A. Barabasi. Modeling the internet’s large-scale topology. Proc.

Nat. Acad. Sciences, 99:13382–13386, Oct. 2002.

[27] BRITE, Boston University Representative Internet Topology Generator,

http://www.cs.bu.edu/brite.

[28] GT-ITM, Georgia Tech Internetwork Topology Models, http://www-

static.cc.gatech.edu/fac/ellen.zegura/graphs.html.

[29] TIERS, topology generator, http://www.isi.edu/nsnam/dist/topogen/tiers1.1.tar.gz.

[30] Bruno Quoitin. Topology generation based on network design heuristics. In CoNEXT’05:

Proceedings of the 2005 ACM conference on Emerging network experiment and technology,

pages 278–279, New York, NY, USA, 2005. ACM Press.

[31] C. de Launois. GHITLE, Generator of Hierarchical Internet Topologies using LEvels,

2003.

[32] Stefan Savage, David Wetherall, Anna R. Karlin, and Tom Anderson. Practical network

support for IP traceback. In SIGCOMM, pages 295–306, 2000.

[33] Kihong Park and Heejo Lee. On the effectiveness of route-based packet filtering for

distributed dos attack prevention in power-law internets. In SIGCOMM ’01: Proceedings

of the 2001 conference on Applications, technologies, architectures, and protocols for

computer communications, pages 15–26, New York, NY, USA, 2001. ACM Press.

[34] C. Labovitz, R. Wattenhofer, S. Venkatachary, and A. Ahuja. The impact of internet

policy and topology on delayed routing convergence. 2001.

[35] Hongsuda Tangmunarunkit, Ramesh Govindan, Scott Shenker, and Deborah Estrin. The

impact of routing policy on internet paths. In INFOCOM, pages 736–742, 2001.

[36] L. Gao and F. Wang. The extent of AS path inflation by routing policies. IEEE Global

Internet Symposium, 2002.

[37] S. Shenker H. Tangmunarunkit, R. Govindan. Internet path inflation due to policy routing.

In Proceeding of SPIE ITCom 2001, Denver 19-24 August 2001, pages 188–195, Aug. 2001.

[38] D. Meyer. The RouteViews project, august 2004, http://www.routeviews.org/.

[39] RIPE NCC, RIPE WHOIS database.

73

BIBLIOGRAPHY

[40] Routeserver, http://www.bgp4.net/.

[41] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination. In

Measurement and Modeling of Computer Systems, pages 307–317, 2000.

[42] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and Randy H. Katz.

Characterizing the internet hierarchy from multiple vantage points. In Proc. of IEEE

INFOCOM 2002, New York, NY, Jun 2002.

[43] G. Di Battista, M. Patrignani, and M. Pizzonia. Computing the types of the relationships

between autonomous systems. Technical Report RT-DIA-73-2002, Dipartimento di

Informatica e Automazione, Universita di Roma Tre, 2002.

[44] Jianhong Xia University. On the evaluation of AS relationship inferences.

[45] B. Quoitin and O. Bonaventure. A survey of the utilization of the BGP community

attribute, 2002.

[46] Ramesh Govindan and Anoop Reddy. An analysis of internet inter-domain topology and

route stability. pages 850–857, 1997.

[47] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by RFC

1349.

[48] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460

(Draft Standard), December 1998.

[49] P.V. Mockapetris. Domain names: Concepts and facilities. RFC 882, November 1983.

Obsoleted by RFCs 1034, 1035, updated by RFC 973.

[50] Y. Rekhter and T. Li. An Architecture for IP Address Allocation with CIDR. RFC 1518

(Proposed Standard), September 1993.

[51] M. Gunes and K. Sarac. Analytical IP alias resolution. IEEE International Conference

on Communications (ICC), 2006.

[52] R. Teixeira, K. Marzullo, S. Savage, and G. Voelker. In search of path diversity in isp

networks. Proceedings of the ACM SIGCOMM Internet Measurement Conference, October

2003.

[53] A. Conta and S. Deering. Internet Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Specification. RFC 2463 (Draft Standard), December 1998.

Obsoleted by RFC 4443.

74

BIBLIOGRAPHY

[54] Ramesh Govindan and Hongsuda Tangmunarunkit. Heuristics for internet map discovery.

In IEEE INFOCOM 2000, pages 1371–1380, Tel Aviv, Israel, March 2000. IEEE.

[55] CAIDA, Iffinder tool.

[56] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public internet measurement

facility. 4th USENIX Symposium on Internet Technologies and Systems, 2002.

[57] Neil Spring Mira. How to resolve IP aliases.

[58] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring isp topologies with

rocketfuel. 32(4):133–145, October 2002.

[59] Vivek Pai Ming Zhang, Yaoping Ruan and Jennifer Rexford. How dns misnaming distorts

internet topology mapping. In Annual Technical Conference Abstract, pages 369–374.

USENIX, 2006.

[60] A. Broido and k claffy. Internet topology: connectivity of IP graphs. Proceedings of SPIE

ITCom, August 2001.

[61] Xiaoliang Zhao, Dan Pei, Lan Wang, Dan Massey, Allison Mankin, Felix S. Wu, and Lixia

Zhang. An analysis of bgp multiple origin as (moas) conflicts. In IMW ’01: Proceedings

of the 1st ACM SIGCOMM Workshop on Internet Measurement, pages 31–35, New York,

NY, USA, 2001. ACM Press.

[62] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang, and Randy H. Katz. Towards an

accurate as-level traceroute tool. In SIGCOMM ’03: Proceedings of the 2003 conference

on Applications, technologies, architectures, and protocols for computer communications,

pages 365–378, New York, NY, USA, 2003. ACM Press.

[63] Z. Mao, D. Johnson, J. Rexford, J. Wang, and R. Katz. Scalable and accurate

identification of as-level forwarding paths. Proceedings of the IEEE INFOCOM, March

2004.

[64] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). RFC 1105

(Experimental), June 1989. Obsoleted by RFC 1163.

[65] Vern Paxson. End-to-end routing behavior in the internet. In SIGCOMM ’96: Conference

proceedings on Applications, technologies, architectures, and protocols for computer

communications, pages 25–38, New York, NY, USA, 1996. ACM Press.

[66] Lisa Amini, Anees Shaikh, and Benning Schulzrinne. Issues with inferring internet

topological attributes. Computer Communications, 27(6):557–567, 2004.

75

BIBLIOGRAPHY

[67] S. V. Krishnamurthy Y. He, M. Faloutsos and B. Huffaker. On routing asymmetry in the

internet. IEEE GLOBECOM, Autonomic Internet, St. Louis, November 2005.

[68] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg,

and M. Terpstra. Routing policy specification language (RPSL), 1999.

[69] RIPE NCC. routing registry consistency check reports.

[70] J. Moy. OSPF specification. RFC 1131 (Proposed Standard), October 1989. Obsoleted

by RFC 1247.

[71] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142 (Informational), February

1990.

[72] Ramesh Govindan, Cengiz Alaettinog-lu, Kannan Varadhan, and Deborah Estrin. Route

servers for inter-domain routing. Computer Networks and ISDN Systems, 30(12):1157–

1174, 1998.

[73] T. Kernen. http://www.traceroute.org/.

[74] J. Postel. Internet Control Message Protocol. RFC 792 (Standard), September 1981.

Updated by RFC 950.

[75] A. Conta, S. Deering, and M. Gupta. Internet Control Message Protocol (ICMPv6) for

the Internet Protocol Version 6 (IPv6) Specification. RFC 4443 (Draft Standard), March

2006.

[76] J.C. Mogul and J. Postel. Internet Standard Subnetting Procedure. RFC 950 (Standard),

August 1985.

[77] V. Jacobson and S. Deering. Traceroute tool, available for download at

ftp://ftp.ee.lbl.gov/traceroute.tar.gz, 1989.

[78] N. McCarthy. Layer four traceroute. http://pwhois.org/lft/.

[79] V. Jacobson. Pathchar tool, available for download at ftp://ftp.ee.lbl.gov/pathchar/.

[80] A. Downey. Using pathchar to estimate internet link characteristics. Proc.SIGCOMM

1999, Cambridge, MA, pages 241–250, September 1999.

[81] M. Toren. tcptraceroute. http://michael.toren.net/code/tcptraceroute.

[82] Ehud Gavron. Nanog traceroute distribution, ftp://ftp.login.com/pub/software/traceroute/.

[83] Princeton University. Planetlab, http://www.planet-lab.org/.

76

BIBLIOGRAPHY

[84] NLANR Measurement and Network Analysis Group. Amp, active measurement project,

http://amp.nlanr.net/.

[85] Y. Shavitt. Dimes, distributed internet measurements and simulations,

http://www.netdimes.org.

[86] Young Hyun, Andre Broido, and kc claffy. On third-party addresses in traceroute paths.

In Passive and Active Measurement Workshop 2003, La Jolla, CA, Apr 2003.

[87] Yuval Shavitt and Eran Shir. Dimes: let the internet measure itself. SIGCOMM Comput.

Commun. Rev., 35(5):71–74, 2005.

[88] T. Moors. Streamlining traceroute by estimating path lengths. In Proc. IEEE

International Workshop on IP Operations and Management (IPOM), 2004.

[89] Renata Teixeira, Keith Marzullo, Stefan Savage, and Geoffrey M. Voelker. Characterizing

and measuring path diversity of internet topologies. In SIGMETRICS ’03: Proceedings

of the 2003 ACM SIGMETRICS international conference on Measurement and modeling

of computer systems, pages 304–305, New York, NY, USA, 2003. ACM Press.

[90] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture.

RFC 3031 (Proposed Standard), January 2001.

[91] J. Byers P. Barford, A. Bestavros and M. Crovella. On the marginal utility of network

topology measurements. SIGCOMM Internet Measurement Workshop, 2001.

[92] Q. Chen, H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. The origin of

power laws in internet topologies revisited.

[93] Lun Li, David Alderson, Walter Willinger, and John Doyle. A first-principles approach to

understanding the internet’s router-level topology. In SIGCOMM ’04: Proceedings of the

2004 conference on Applications, technologies, architectures, and protocols for computer

communications, pages 3–14, New York, NY, USA, 2004. ACM Press.

[94] Aaron Clauset and Cristopher Moore. Accuracy and scaling phenomena in internet

mapping. Physical Review Letters, 94:018701, 2005.

[95] T. Friedman B. Donnet, P. Raoult and M. Crovella. Traceroute@home project,

http://trhome.sourceforge.net/.

[96] B Donnet, T. Friedman, and M. Crovella. Improved algorithms for network topology

discovery. In Proc. Passive and Active Measurement Workshop (PAM), Boston, MA,

USA, Mar. 2005.

77

BIBLIOGRAPHY

[97] B. Donnet and T. Friedman. Topology discovery using an address prefix based stopping

rule. In Proc. EUNICE Workshop, Madrid, Spain, Jul. 2005.

[98] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.

[99] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless Inter-Domain Routing (CIDR):

an Address Assignment and Aggregation Strategy. RFC 1519 (Proposed Standard),

September 1993.

[100] T. Friedman B. Donnet, B. Huffaker and Kc claffy. Increasing the coverage of a cooperative

internet topology discovery algorithm. submitted to internet measurement conference

(imc) 2006., 2006.

[101] B. Donnet. Chapter 8 - windowed doubletree - doctorate thesis. sept 2006.

[102] Benoit Donnet, Philippe Raoult, and Timur Friedman. Efficient route tracing from a

single source, 2006.

[103] Benoit Donnet, Bruno Baynat, and Timur Friedman. Retouched bloom filters: Allowing

networked applications to flexibly trade off false positives against false negatives, 2006.

[104] B. Donnet and T. Friedman. Topology discovery using an address prefix based stopping

rule. IFIP, Internation Federation for Information Processing, 196:119–130, Mar. 2006.

[105] B. Donnet, B. Huffaker, T. Friedman, and kc claffy. Implementation and deployment of a

distributed network topology discovery algorithm. cs.NI 0603062, arXiv, Mar. 2006. See

also the traceroute@home project: http://trhome.sourceforge.net.

[106] T. Friedman et Kc claffy. B. Donnet, B. Huffaker. Evaluation of a large-scale topology

discovery algorithm. in proc. 6th ieee international workshop on ip operations and

management (ipom). oct. 2006, dublin, ireland.

[107] X. A. Dimitropoulos and G. F. Riley. Creating realistic bgp models. In Modeling, Analysis

and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003. 11th

IEEE/ACM International Symposium on, pages 64–70, 2003.

[108] GNU Zebra Open-Source Routing Software, http://www.zebra.org/.

[109] UCB/LBNL/VINT. The NS-2 network simulator, Aug. 2003.

http://www.isi.edu/nsnam/ns/.

78

BIBLIOGRAPHY

[110] J. Cowie and H. Liu. Towards realistic million-node internet simulations. In Proceedings

of the International Conference on Parallel and Distributed Processing Techniques and

Applications, 1999.

[111] Ahmed Sobeih, Wei P. Chen, Jennifer C. Hou, Lu C. Kung, Ning Li, Hyuk Lim, Hung Y.

Tyan, and Honghai Zhang. J-sim: A simulation environment for wireless sensor networks.

In Annual Simulation Symposium, pages 175–187, 2005.

[112] Timothy G. Griffin and Gordon Wilfong. An analysis of bgp convergence properties. In

SIGCOMM ’99: Proceedings of the conference on Applications, technologies, architectures,

and protocols for computer communication, pages 277–288, New York, NY, USA, 1999.

ACM Press.

[113] Sugih Jamin, Cheng Jin, Anthony R. Kurc, Danny Raz, and Yuval Shavitt. Constrained

mirror placement on the internet. In INFOCOM, pages 31–40, 2001.

[114] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology generator, 2000.

[115] D. Meyer. University of oregon route views archive project, http://archive.routeviews.org.

[116] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John W. Byers. BRITE: An

approach to universal topology generation. In MASCOTS, page 346. IEEE Computer

Society, 2001.

[117] K. Calvert, J. Eagan, S. Merugu, A. Namjoshi, J. Stasko, and E. Zegura. Extending and

enhancing gt-itm. In MoMeTools ’03: Proceedings of the ACM SIGCOMM workshop on

Models, methods and tools for reproducible network research, pages 23–27, New York, NY,

USA, 2003. ACM Press.

[118] U. Brandes. A faster algorithm for betweenness centrality, 2001.

79

BIBLIOGRAPHY

80

Appendix A

Interaction with a C-BGP instance

The c-bgp simulator provides an easy CISCO-like command-line interface, but simulations are

generally configured through the use of scripts. A c-bgp script (*.cli) contains a sequence of

c-bgp commands that are used to build the topology by adding nodes and links, and to setup

BGP sessions.

net add node address1
net add node address2
net add l ink address1 address2 de lay

Listing A.1: Example of commands contained in a c-bgp script

The simulator can either be launched in interactive mode which gives the user direct access

to the command-line interface, or in script mode which executes the commands contained in a

specified script file. However, for more advanced simulations, several interfaces are provided to

facilitate communication between a c-bgp instance and various programming languages (Perl,

Python, Java). The two latter experience memory management problems and are still under

development. Perl was therefore chosen as the best alternative.

The perl interface is provided for easy communication between a perl script and a c-bgp instance.

It comes as a perl module to be imported in the perl script. This module contains methods to

establish the dialog and to send and receive messages to and from the c-bgp instance.

use CBGP 0 . 3 ;

Create cbgp in s t ance and e s t a b l i s h communication

my $cbgp = CBGP−>new("../bin/cbgp") ;
$cbgp−>spawn ;

81

APPENDICES A : Interaction with a C-BGP instance

$cbgp−>send ("set autoflush on\n") ;

In t e r a c t i o n s with cbgp in s t anc e

. . .

Terminate communication

$cbgp−> f i n a l i z e ;

Listing A.2: Communication establishment with the c-bgp simulator

A typical interaction scheme would consist of setting up the simulated environment (e.g. feeding

the instance with c-bgp commands from a script), ”running it” and then performing one or more

requests (e.g. sending a traceroute command and retrieving the answer) :

Simulat ion setup

$cbgp−>send ("net add node address1\n") ;
$cbgp−>send ("net add node address2\n") ;
$cbgp−>send ("net add link address1 address2 delay\n") ;

Simulat ion run

$cbgp−>send ("sim run\n") ;

Send t r a c e r ou t e r eque s t and wait f o r answer

$cbgp−>send ("net node address1 record-route address2\n") ;
my $response = $cbgp−>expect (1) ;

Listing A.3: Interaction scheme with the c-bgp instance

82

Appendix B

C-BGP patch source code

B.1 Added/modified functions to bgp.c

1

2 // −−−−− c l i b g p t o p o l o g y c l e a r r i b s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 /∗∗
4 ∗ Clears a l l RIB tab l e s for memory purposes ; patch by G. Culpin

5 ∗
6 ∗/
7 int c l i b g p t o p o l o g y c l e a r r i b s (SCliContext ∗ pContext , STokens ∗ pTokens){
8

9 int i Index ;

10 SPtrArray ∗ pRL;

11 SBGPRouter ∗ pRouter ;

12 pRL = (SPtrArray ∗) b u i l d r o u t e r l i s t () ;

13

14 // For a l l BGP in s t anc e s . . .

15 for (i Index= 0 ; i Index < p t r a r r ay l e ng th (pRL) ; i Index++) {
16 pRouter = (SBGPRouter ∗) pRL−>data [i Index] ;

17 i f (b gp r ou t e r d e l r i b (pRouter))

18 return CLI ERROR COMMAND FAILED;

19 }
20 return CLI SUCCESS ;

21 }
22

23 //

24 // −−−−− c l i b g p r o u t e r d e l r i b −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 /∗∗
26 ∗ Remove RIB tab l e s o f route r for memory purposes ; patch by G. Culpin

27 ∗
28 ∗/
29 int c l i b g p r o u t e r d e l r i b (SCliContext ∗ pContext , STokens ∗ pTokens)

30 {
31 SBGPRouter ∗ pRouter ;

32

33 // Get BGP ins tance from context

34 pRouter = (SBGPRouter ∗) c l i c o n t e x t g e t i t em a t t o p (pContext) ;

35

36 // Clear the RIB

37 i f (b gp r ou t e r d e l r i b (pRouter))

38 return CLI ERROR COMMAND FAILED;

39

40 return CLI SUCCESS ;

41 }
42

43 // −−−−− c l i r e g i s t e r b g p t o p o l o g y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 int c l i r e g i s t e r b g p t o p o l o g y (SCliCmds ∗ pCmds)

83

APPENDICES B : C-BGP patch source code

45 {
46 SCliCmds ∗ pSubCmds ;

47 SCliParams ∗ pParams ;

48

49 pSubCmds= c l i cmd s c r e a t e () ;

50 pParams= c l i p a r ams c r e a t e () ;

51 # i f d e f FILENAME COMPLETION FUNCTION

52 c l i params add2 (pParams , " < file > " , NULL,

53 FILENAME COMPLETION FUNCTION) ;

54 # e l s e

55 c l i params add (pParams , " < file > " , NULL) ;

56 #e n d i f

57 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" l o a d " ,

58 c l i b gp topo l o gy l o ad ,

59 NULL, pParams)) ;

60 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" p o l i c i e s " ,

61 c l i b g p t o p o l o g y p o l i c i e s ,

62 NULL, NULL)) ;

63 # i f d e f HAVE XML

64 pParams= c l i p a r ams c r e a t e () ;

65 # i f d e f FILENAME COMPLETION FUNCTION

66 c l i params add2 (pParams , " < file > " , NULL,

67 FILENAME COMPLETION FUNCTION) ;

68 # e l s e

69 c l i params add (pParams , " < file > " , NULL) ;

70 #e n d i f

71 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" xml - l o a d " ,

72 c l i bgp xml topo l ogy l oad ,

73 NULL, pParams)) ;

74 pParams= c l i p a r ams c r e a t e () ;

75 # i f d e f FILENAME COMPLETION FUNCTION

76 c l i params add2 (pParams , " < file > " , NULL,

77 FILENAME COMPLETION FUNCTION) ;

78 # e l s e

79 c l i params add (pParams , " < file > " , NULL) ;

80 #e n d i f

81 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" xml - d u m p " ,

82 c l i bgp xml topology dump ,

83 NULL, pParams)) ;

84 #e n d i f

85 pParams= c l i p a r ams c r e a t e () ;

86 c l i params add (pParams , " < prefix > " , NULL) ;

87 c l i params add (pParams , " < input > " , NULL) ;

88 c l i params add (pParams , " < output > " , NULL) ;

89 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" record - r o u t e " ,

90 c l i b gp t opo l o gy r e c o rd r ou t e ,

91 NULL, pParams)) ;

92 # i f d e f EXPERIMENTAL

93 pParams= c l i p a r ams c r e a t e () ;

94 c l i params add (pParams , " < prefix > " , NULL) ;

95 c l i params add (pParams , " < bound > " , NULL) ;

96 c l i params add (pParams , " < input > " , NULL) ;

97 c l i params add (pParams , " < output > " , NULL) ;

98 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" record - route - bm " ,

99 c l i bgp topo logy reco rdroute bm ,

100 NULL, pParams)) ;

101 #e n d i f

102 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" show - rib " ,

103 c l i bgp topo l ogy showr ib ,

104 NULL, NULL)) ;

105 // RIB tab l e patch for memory purposes by G. Culpin

106 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" clear - r i b s " ,

107 c l i b g p t o p o l o g y c l e a r r i b s ,

108 NULL, NULL)) ;

109 /∗
110 pParams= c l i p a r ams c r e a t e () ;

111 c l i params add (pParams , " < prefix > " , NULL) ;

112 c l i params add (pParams , " < output > " , NULL) ;

113 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" route - dp - r u l e " ,

114 c l i b gp t opo l o gy r ou t e dp ru l e ,

115 NULL, pParams)) ;

84

Appendix B.2 : Added/modified functions to as.c

116 ∗/
117 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" run " ,

118 c l i bgp topo l ogy run ,

119 NULL, NULL)) ;

120 return c l i cmds add (pCmds , c l i cmd c r e a t e (" t o p o l o g y " , NULL, pSubCmds , NULL)) ;

121 }
122

123 // −−−−− c l i r e g i s t e r b g p r o u t e r d e l −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
124 int c l i r e g i s t e r b g p r o u t e r d e l (SCliCmds ∗ pCmds)

125 {
126 SCliCmds ∗ pSubCmds ;

127 SCliParams ∗ pParams ;

128

129 pSubCmds= c l i cmd s c r e a t e () ;

130 pParams= c l i p a r ams c r e a t e () ;

131 c l i params add (pParams , " < prefix > " , NULL) ;

132 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" n e t w o r k " ,

133 c l i b gp r ou t e r d e l n e two rk ,

134 NULL, pParams)) ;

135 // RIB tab l e patch for memory purposes by G. Culpin

136 c l i cmds add (pSubCmds , c l i cmd c r e a t e (" rib " ,

137 c l i b g p r o u t e r d e l r i b ,

138 NULL, NULL)) ;

139 return c l i cmds add (pCmds , c l i cmd c r e a t e (" del " , NULL, pSubCmds , NULL)) ;

140 }

B.2 Added/modified functions to as.c

1 // −−−−− bgp r ou t e r d e l r i b −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 /∗∗
3 ∗ Remove RIB contents o f a route r ; patch by G. Culpin

4 ∗/
5 int bgp r ou t e r d e l r i b (SBGPRouter ∗ pRouter)

6 {
7 // remove route r ’ s l o c a l RIB

8 r i b _ d e s t r o y (& pRouter - > p L o c R I B) ;

9 pRouter - > p L o c R I B = r i b _ c r e a t e (0) ;

10

11 // r e m o v e r o u t e r ’s adjacency RIBs (in and out)

12 int i Index ;

13 SPeer ∗ pPeer ;

14 for (i Index= 0 ; i Index < p t r a r r ay l e ng th (pRouter−>pPeers) ; i Index++) {
15 pPeer = (SPeer ∗) pRouter−>pPeers−>data [i Index] ;

16 r i b d e s t r o y (&pPeer−>pAdjRIBIn) ;

17 r i b d e s t r o y (&pPeer−>pAdjRIBOut) ;

18 pPeer−>pAdjRIBIn = r i b c r e a t e (0) ;

19 pPeer−>pAdjRIBOut = r i b c r e a t e (0) ;

20 }
21

22 return 0 ;

23 }

85

APPENDICES B : C-BGP patch source code

86

Appendix C

XML discovery files

C.1 XML Schema – discovery.xsd

1 <?xml version=" 1.0 " ?>

2 <xs:schema xmlns:xs=" h t t p : // www . w3 . org / 2 0 0 1 / X M L S c h e m a " targetNamespace=" h t t p : // www . ucl . ac . be "

xmlns=" h t t p : // www . ucl . ac . be "

3 elementFormDefault=" q u a l i f i e d ">

4

5 <xs : e l ement name=" d i s c o v e r y ">

6 <xs:complexType>

7 <xs : s equence>

8 <xs : e l ement name=" c l u s t e r " type=" c l u s t e r _ t y p e " minOccur=" 1 " maxOccur=" * "/>

9 </ xs : s equence>

10 </xs:complexType>

11 </ xs : e l ement>

12

13 <xs:complexType name=" c l u s t e r _ t y p e ">

14 <x s : a t t r i b u t e name=" id " type=" x s : i n t e g e r " use=" r e q u i r e d "/>

15 <xs : s equence>

16 <xs : e l ement name=" c d e s t " type=" x s : i n t e g e r " minOccur=" 0 " maxOccur=" * "/>

17 <xs : e l ement name=" g l o b a l _ s e t " type=" g l o b a l s e t _ t y p e " minOccur=" 0 " maxOccur=" 1 "/>

18 <xs : e l ement name=" src " type=" s r c _ t y p e " minOccur=" 1 " maxOccur=" * "/>

19 </ xs : s equence>

20 </xs:complexType>

21

22 <xs:complexType name=" g l o b a l s e t _ t y p e ">

23 <xs :anyAtt r ibute />

24 </xs:complexType>

25

26 <xs:complexType name=" s r c _ t y p e ">

27 <x s : a t t r i b u t e name=" ip " type=" x s : i n t e g e r " use=" r e q u i r e d "/>

28 <x s : a t t r i b u t e name=" hop " type=" x s : i n t e g e r "/>

29 <xs : s equence>

30 <xs : e l ement name=" d " type=" x s : i n t e g e r " minOccur=" 0 " maxOccur=" * "/>

31 </ xs : s equence>

32 </xs:complexType>

33

34 </xs:schema>

C.2 Example of generated discovery file – example1.xml

1 <d i s cove ry>

2 <c l u s t e r id=" 0 ">

87

APPENDICES C : XML discovery files

3 <s r c ip=" 1 3 1 1 4 5 ">

4 <d>196620</d>

5 <d>196621</d>

6 </ s r c>

7 <s r c ip=" 23 ">

8 <d>196609</d>

9 <d>262158</d>

10 </ s r c>

11 <s r c ip=" 6 5 5 6 5 ">

12 <d>196629</d>

13 <d>196613</d>

14 <d>262149</d>

15 </ s r c>

16 <s r c ip=" 6 5 5 7 6 ">

17 <d>196622</d>

18 <d>196632</d>

19 </ s r c>

20 </ c l u s t e r>

21 </ d i s cove ry>

88

Appendix D

Guidance for script usage

D.1 AS classification script usage

Usage: ./classifyAS.pm <as_topology_file>

D.2 Discovery setup script usage

Usage: ./setupDiscovery [options] <as_topology_file>

By default, independent destination sets are generated for sources inside a single cluster

Required:

--srcs (-s) <i0 i1 i2 i3 i4 b0 b1 b2 b3 b4> specifies the number of sources per type/level

--dests (-d) <i0 i1 i2 i3 i4 b0 b1 b2 b3 b4> specifies the number of destinations per type/level

Options:

--rfile (-r) <file> specifies the underlying cbgp router topology of given AS topology

--cap (-c) <n> specifies the maximum number of monitors (sources) per destination

--clusters (-n) <n> specifies the number of clusters in which to divide monitors

--exclude_src_as_dest (-e) excludes the choice of source nodes as potential destinations

--ip-string exports the XML file with IP addresses in dotted format

--help (-?) this page

--info (-i) show information

--debug show debug information

D.3 Discovery simulation script usage

Usage: ./performDiscovery [options] <as_topology_file> <xml_discovery_file>

Options:

--rfile (-r) <file> specifies the underlying cbgp router topology of given AS topology

--hop-eval (-h) <n> specifies the number of destinations used to evaluate initial hop

--hit-probability (-p) <f> specifies the probability p of hitting a destination on the first probe

--max-propagations (-m) <n> specifies the maximum number of prefixes to propagate in cbgp before a restart

89

APPENDICES D : Guidance for script usage

--bloom-capacity (-c) <n> specifies the capacity of bloom filters used for encoding global sets

--bloom-error (-e) <f> specifies the error rate of bloom filters used for encoding global sets

--nobloom (-n) don’t use bloom filters for encoding global sets

--traceroute (-t) don’t use doubletree discovery but simple traceroutes

--help (-?) this page

--show-info (-i) show information

--show-detailed-results (-d) show detailed result information

--debug show debug information

90

Appendix E

Perl source code

All the following source code is also available on the provided CD-ROM.

E.1 AS-level topology classification script – classifyAS

1 #! / u s r / b i n / p e r l

2 # ===

3 # C l a s s i f i e s an AS t o p o l o g y a c c o r d i n g t o ” C h a r a c t e r i z i n g t h e

4 # I n t e r n e t H i e r a r c h y f r om M u l t i p l e Van t a g e P o i n t s ” a r t i c l e

5 # S i b l i n g r e l a t i o n s h i p s a r e r e l a x e d t o p2p

6 #

7 # Usage : . / c l a s s i f y A S . pm i n f i l e

8 #

9 # @autho r G r e g o r y C u l p i n

10 # @date 2 0 / 0 2 / 2 0 0 6

11 # @ l a s t d a t e 5 / 0 3 / 2 0 0 6

12 # ===

13

14 use s t r i c t ;

15 use l i b " . " ;

16 use Graph : : Directed ;

17 use constant {
18 # s c r i p t o p t i o n s

19 DEBUG => 0 , # debug s t e p−by−s t e p a l g o r i t h m d e t a i l s

20 INFO => 1 , # g e n e r i c i n f o r m a t i o n

21 # AS c l a s s i f i c a t i o n

22 AS CORE => 0 ,

23 AS TRANSIT => 1 ,

24 AS OUTER => 2 ,

25 AS ISP => 3 ,

26 AS CUSTOMER => 4 ,

27 } ;

28

29 # v a r i o u s u t i l s

30 use Data : : Dumper ;

31

32 # MAIN

33

34 my $ i n f i l e = $ARGV[0] ;

35 my $ o u t f i l e = $ i n f i l e . " . c l a s s i f i e d " ;

36 i f (@ARGV!=1) {
37 die " \ n U s a g e : $0 < a s _ t o p o l o g y _ f i l e >\ n "

38 }
39 my $astopo = r e a d f i l e ($ i n f i l e) ;

40 my $asgraph = Graph : : Directed−>new () ;

41

91

APPENDICES E : Perl source code

42 bu i ld asgraph ($asgraph , $astopo) ;

43 c l a s s i f y a nd e xp o r t ($asgraph , $ ou t f i l e , $ i n f i l e) ;

44

45 # SUBS

46

47 sub r e a d f i l e

48 {
49 my $ f i l ename = sh i f t ;

50 my @l ines ;

51

52 open(FILE , " < $ f i l e n a m e ") or die " Can ’ t o p e n $ f i l e n a m e : $! " ;

53 while (<FILE>) {
54 s/#. ∗ / / ; # i g n o r e comments by e r a s i n g them

55 next i f /ˆ(\ s)∗$ / ; # s k i p b l a n k l i n e s

56 chomp ; # remove t r a i l i n g n e w l i n e c h a r a c t e r s

57 push @lines , $; # push t h e d a t a l i n e o n t o t h e a r r a y

58 }
59 close FILE ;

60

61 print " - I m p o r t e d " . (@l ines) . " l i n e s f r o m $ f i l e n a m e \ n " ;

62 return \@l ines ; # a r r a y r e f e r e n c e

63

64 }
65

66 sub bu i ld asgraph {
67

68 my ($g , $topo) = @ ;

69

70 foreach (@$topo) {
71 my @line= sp l i t /\s+/;

72 # add e a c h AS a s v e r t e x and r e l a t i o n s h i p a s e d g e

73 i f (scalar (@l ine) == 3) { # i n p u t f o r m a t [a s 1 a s 2 r e l a t i o n s h i p] (0 : PP ,−1 :CP , 1 : PC

, 2 : S)

74 i f ($ l i n e [2]==0) { # pe e r−to−p e e r r e l a t i o n s h i p i s r e p r e s e n t e d by two

d i r e c t i o n a l e d g e s

75 $g−>add edge ($ l i n e [1] , $ l i n e [0]) ;

76 $g−>add edge ($ l i n e [0] , $ l i n e [1]) ;

77 }
78 e l s i f ($ l i n e [2]==−1) { # cu s t ome r−to−p r o v i d e r r e l a t i o n s h i p r e p r e s e n t e d by

a d i r e c t i o n a l e d g e

79 $g−>add edge ($ l i n e [1] , $ l i n e [0]) ;

80 }
81 e l s i f ($ l i n e [2]==1) { # p r o v i d e r−to−c u s t o m e r r e l a t i o n s h i p r e p r e s e n t e d by a

d i r e c t i o n a l e d g e

82 $g−>add edge ($ l i n e [0] , $ l i n e [1]) ;

83 }
84 e l s i f ($ l i n e [2]==2) { # s i b l i n g r e l a t i o n s h i p c u r r e n t l y d r o pp e d (o r

p r e v i o u s l y c o n v e r t e d ba ck t o p2p

85 }
86 else {
87 die " r e l a t i o n s h i p f i l e has s y n t a x e r r o r s (w r o n g v a l u e for 3 rd

a r g u m e n t) \ n " ;

88 }
89 }
90 else {
91 die " r e l a t i o n s h i p f i l e has s y n t a x e r r o r s (w r o n g n u m b e r of a r g u m e n t s per

l i n e) \ n " ;

92 }
93 }
94

95 print " - F o u n d " . ($g−>un i qu e v e r t i c e s) . " A S e s and " . ($g−>unique edges) . " i n t e r a c t i o n s \ n "

i f INFO; # i n t e r a c t i o n s c o n t a i n d o u b l e P−P e d g e s

96

97 }
98

99 sub c l a s s i f y a nd e xp o r t {
100

101 my ($g , $f i lename , $ i n f i l e) = @ ;

102 my $tmp = $g−>copy graph ;

103

104 # FIRST PASS : c l a s s i f y c u s t o m e r s (LEVEL 4)

92

Appendix E.1 : AS-level topology classification script – classifyAS

105

106 my @customers = $tmp−>s i n k v e r t i c e s ;

107 foreach (@customers){ # s i n k h a s p r e d e c e s s o r s bu t no s u c c e s s o r s

108 $g−>s e t v e r t e x we i gh t ($,AS CUSTOMER) ; # l a b e l c u s t o m e r s i n AS g r a ph

109 $tmp−>d e l e t e v e r t e x ($) ; # remove f r om temp g r a ph

110 }
111 my $num CUSTOMERS = @customers ;

112

113 print " C l a s s i f i e d " .$num CUSTOMERS. " c u s t o m e r A S e s \ n " i f INFO;

114

115 # SECOND PASS : r e v e r s e p r u n i n g t o c l a s s i f y s m a l l I SP s (LEVEL 3)

116 my $num ISPs =0;

117 my @leaves = $tmp−>s i n k v e r t i c e s ;

118 while (@leaves){
119 my $v = pop(@leaves) ;

120 $num ISPs++;

121 $g−>s e t v e r t e x we i gh t ($v , AS ISP) ;

122 $tmp−>d e l e t e v e r t e x ($v) ;

123 i f (@leaves==1){ # l a s t l e a f was r emoved f r om p r e v i o u s l e a v e s

124 @leaves = $tmp−>s i n k v e r t i c e s ;

125 }
126 }
127

128 print " C l a s s i f i e d " . $num ISPs . " s m a l l ISP A S e s \ n " i f INFO;

129

130 # THIRD PASS (2) : g r e e d i l y c l a s s i f y d e n s e c o r e ASes (LEVEL 0)

131

132 my $num globalCORE = $tmp−>un i qu e v e r t i c e s ;

133 my $co r e edge s = $tmp−>unique edges ;

134 my $und i r e c t ed co r e = $tmp−>undi rected copy graph ;

135

136 my @core = $tmp−>un i qu e v e r t i c e s ; # c o n t a i n s d e n s e c o r e , t r a n s i t c o r e and o u t e r c o r e

137 my $ c o r e s i z e = scalar @core ;

138 my @dense core ;

139 my $temp trans i t = $tmp−>copy graph ; # g r aph c o n t a i n i n g n o d e s e x c l u d i n g c u r r e n t (f o r

g r e e d y s e a r c h)

140 my $dense = $tmp−>undi rected copy graph ; # ke ep copy t o p e r f o r m d e n s e c o r e s t a t s

141

142 my $z = max outdegree ($tmp) ; # z i s max o u t d e g r e e node

143 print " AS " . $z . " w i t h max c o n n e c t i v i t y is a d d e d to d e n s e c o r e \ n " i f DEBUG;

144 push (@dense core , $z) ;

145 $temp trans i t−>d e l e t e v e r t e x ($z) ;

146

147 # g r e e d y a l g o r i t h m

148 while (scalar @dense core != $ c o r e s i z e){ # w h i l e X d o e s n ’ t c o n t a i n a l l c o r e v e r t i c e s

149 my ($y , $y c) = max connect iv i ty ($temp trans i t ,\@dense core , $tmp) ; # g e t v e r t e x

w i t h max c o n n e c t i v i t y

150 push (@dense core , $y) ; # add t o X

151 print " AS " . $y . " w i t h c o n n e c t i v i t y " . $y c . " is a d d e d to d e n s e c o r e \ n " i f DEBUG;

152 print " t e s t i n g if " . $y c . " < " . (scalar @dense core /2) . " \ n " i f DEBUG;

153 i f ($y c < (scalar @dense core /2)) { # conn (k +1) < (k +1) /2 −> p r e v i o u s s e t was

d en s e , bu t n o t anymore

154 pop (@dense core) ;

155 print " d e t e r m i n e d g r e e d i l y d e n s e c o r e of " . (scalar @dense core) . " A S e s \ n "

i f DEBUG;

156 last ; # s t o p g r e e d y s e a r c h

157 }
158 $temp trans i t−>d e l e t e v e r t e x ($y) ; # upda t e c u r r e n t t r a n s i t c o r e

159 }
160 my $num DENSE = scalar @dense core ;

161

162 # l a b e l i n g r a ph

163 foreach (@dense core){
164 $g−>s e t v e r t e x we i gh t ($,AS CORE) ;

165 }
166 # d e l e t e a l l non−d e n s e n o d e s f r om g r a ph t o p e r f o r m d e n s e s t a t s

167 foreach my $v ($dense−>un i qu e v e r t i c e s){
168 my $ i s d en s e =0;

169 foreach (@dense core) {
170 i f ($ ==$v){
171 $ i s d en s e =1;

93

APPENDICES E : Perl source code

172 }
173 }
174 i f ($ i s d en s e==0){
175 $dense−>d e l e t e v e r t e x ($v) ;

176 }
177 }
178

179 print " C o r e c o n t a i n s " . $num globalCORE . " A S e s and " . $und i r ec ted core−>unique edges . " l i n k s

w i t h a v e r a g e d e g r e e of " . $und i r ec ted core−>average degree . " \ n " i f INFO;

180 print " C l a s s i f i e d " . $dense−>un i qu e v e r t i c e s . " d e n s e c o r e A S e s h a v i n g " . $dense−>

unique edges . " l i n k s w i t h a v e r a g e d e g r e e of " . $dense−>average degree . " \ n " i f INFO;

181

182 # FOURTH PASS : g r e e d i l y c l a s s i f y t r a n s i t c o r e ASes (LEVEL 1)

183

184 print $temp trans i t−>un i qu e v e r t i c e s . " A S e s r e m a i n to be c l a s s i f i e d \ n " ;

185

186 my @tran s i t c o r e ;

187 my $temp outer = $tmp−>copy graph ; # gr aph c o n t a i n i n g n o d e s e x c l u d i n g c u r r e n t (f o r g r e e d y

s e a r c h)

188

189 my $z = max outdegree ($tmp) ; # z i s max o u t d e g r e e node

190 print " AS " . $z . " w i t h max c o n n e c t i v i t y is a d d e d to t r a n s i t c o r e \ n " i f DEBUG;

191 push (@trans i t co r e , $z) ;

192 $temp outer−>d e l e t e v e r t e x ($z) ;

193

194 while (scalar @tran s i t c o r e != $ c o r e s i z e){ # w h i l e X d o e s n ’ t c o n t a i n a l l c o r e v e r t i c e s

195 my ($y , $y c) = max connect iv i ty ($temp outer ,\ @trans i t co re , $tmp) ; # g e t v e r t e x

w i t h max c o n n e c t i v i t y

196 push (@trans i t co r e , $y) ; # add t o X

197 print " AS " . $y . " w i t h c o n n e c t i v i t y " . $y c . " is a d d e d to t r a n s i t c o r e \ n " i f DEBUG;

198

199 print " t e s t i n g if " . in way cut ($temp outer ,\ @trans i t co re , $tmp) . " < " . ((scalar

@tran s i t c o r e) /2) . " \ n " i f DEBUG;

200 i f (in way cut ($temp outer ,\ @trans i t co re , $tmp) < (scalar @tran s i t c o r e) /2) { #

conn (k +1) < (k +1) /2

201 pop (@t ran s i t c o r e) ;

202 print " d e t e r m i n e d g r e e d i l y t r a n s i t c o r e of " . (scalar @tran s i t c o r e) . " A S e s

\ n " i f DEBUG;

203 last ; # s t o p g r e e d y s e a r c h

204 }
205 $temp outer−>d e l e t e v e r t e x ($y) ; # upda t e c u r r e n t t r a n s i t c o r e

206 }
207

208 # remove i n c l u d e d d e n s e c o r e

209 my @f i n a l t r a n s i t ;

210 foreach my $t (@t ran s i t c o r e){
211 my $ i s c o r e =0;

212 foreach (@dense core) {
213 i f ($t==$) {
214 $ i s c o r e =1;

215 }
216 }
217 i f ($ i s c o r e==0){
218 push (@ f i n a l t r a n s i t , $t) ;

219 }
220 }
221

222 print " C l a s s i f i e d " . scalar @f i n a l t r a n s i t . " t r a n s i t c o r e A S e s \ n " i f INFO;

223 # l a b e l i n g r a ph

224 foreach (@ f i n a l t r a n s i t){
225 $g−>s e t v e r t e x we i gh t ($,AS TRANSIT) ;

226 }
227 print " C l a s s i f i e d " . $temp outer−>un i qu e v e r t i c e s . " r e m a i n i n g as o u t e r c o r e A S e s \ n " ;

228 foreach ($temp outer−>un i qu e v e r t i c e s){
229 $g−>s e t v e r t e x we i gh t ($,AS OUTER) ;

230 }
231

232 # Wr i t e r e s u l t s t o f i l e

233 open CLASSIFIED , " > $ f i l e n a m e " or

234 die " E r r o r : u n a b l e to c r e a t e C L A S S I F I E D f i l e \" $ f i l e n a m e \": $! " ;

235

94

Appendix E.1 : AS-level topology classification script – classifyAS

236 # −−−| Head e r |−−−
237 print CLASSIFIED " # AS c l a s s i f i c a t i o n p e r f o r m e d by C l a s s i f y A S \ n " ;

238 print CLASSIFIED " # on " . localtime (time ()) . " and b a s e d on $ i n f i l e \ n " ;

239 print CLASSIFIED " # F o r m a t : a s _ n u m l e v e l \ n " ;

240 print CLASSIFIED " # L e v e l s : 0= C O R E 1= T R A N S I T 2= O U T E R 3= ISP 4= C U S T O M E R \ n " ;

241 print CLASSIFIED " # T o p o l o g y c o n t a i n s " . $g−>un i qu e v e r t i c e s . " A S e s and " . $g−>unique edges .

" u n i d i r e c t i o n a l r e l a t i o n s h i p s \ n " ;

242 #p r i n t CLASSIFIED ”# $num DENSE COREs , $num TRANSIT TRANSITs , $num ISPs

ISPs , $num CUSTOMERS CUSTOMERs\n ” ;

243

244 # −−−| C l a s s i f i c a t i o n |−−−
245 foreach ($g−>un i qu e v e r t i c e s){
246 print CLASSIFIED $. " " . $g−>ge t v e r t ex we i gh t ($) . " \ n " ;

247 }
248

249 close CLASSIFIED ;

250 }
251

252 # compute maximum out−d e g r e e node o f g r a ph g

253 sub max outdegree {
254 my ($g) = @ ;

255 my $max=0;

256 my $max c=0;

257 foreach ($g−>un i qu e v e r t i c e s){
258 i f ($g−>out degree ($)>$max c){
259 $max=$;

260 $max c=$g−>out degree ($) ;

261 }
262 }
263 return $max ;

264 }
265

266 # compute node o f g r a ph g−X h a v i n g maximum out−d e g r e e i n g w i t h a s p e c i f i e d s e t o f v e r t i c e s

267 sub max connect iv i ty {
268 my ($g minus X , $set , $g) = @ ;

269 my $max ;

270 my $max c=0;

271 foreach ($g minus X−>un i qu e v e r t i c e s){ # compute c f o r e a c h v e r t e x i n g−X

272 my $c=ge t c onn e c t i v i t y ($, $set , $g) ;

273 i f ($c>$max c){ # s t o r e v e r t e x w i t h max c

274 $max=$;

275 $max c=$c ;

276 }
277 }
278 return ($max , $max c) ;

279 }
280

281 # compute number o f o u t g o i n g e d g e s f r om node v t o a s e t o f v e r t i c e s , a l l i n g r a ph G

282 sub g e t c onn e c t i v i t y {
283 my ($v , $set , $g) =@ ;

284 my $count=0;

285 foreach (@{ $se t }) { # f o r e a c h s e t member , c h e c k i f e x i s t s d i r e c t e d e d g e f r om v

286 i f ($g−>has edge ($v , $)){
287 $count++;

288 }
289 }
290 return $count ;

291 }
292

293 # compute number o f i n c o m i n g e d g e s t o t h e s e t members f r om i t s c omp l emen t s e t (g−X)

294 sub in way cut {
295 my ($g minus X , $set , $g) =@ ;

296 my $count=0;

297 foreach my $m (@{ $se t }) { # f o r e a c h s e t member , c o u n t i n c o m i n g e d g e s f r om o u t s i d e (g−X)

298 foreach ($g minus X−>un i qu e v e r t i c e s){
299 i f ($g−>has edge ($,$m)){
300 $count++;

301 }
302 }
303 }
304 return $count ;

95

APPENDICES E : Perl source code

305 }

E.2 Discovery setup script – setupDiscovery

1 #! / u s r / b i n / p e r l

2 # ===

3 # D i s c o v e r y s e t u p s c r i p t

4 # @(#) s e t u p D i s c o v e r y

5 # @autho r G r e g o r y C u l p i n

6 # @date 0 8 / 0 4 / 2 0 0 6

7 # @ l a s t d a t e 1 2 / 0 5 / 2 0 0 6

8 # ===

9

10 use topology ;

11 use t o o l s ;

12 use s t r i c t ;

13 use l i b " . " ;

14 use Math : : BigInt ;

15 use Data : : Dumper ;

16 use Graph : : Directed ;

17 use Graph : : Undirected ;

18 use Getopt : : Long ;

19 use constant {
20 # r o u t e r− l e v e l node l a b e l s

21 NLABELS RNODES => 2 ,

22 ROUTER INTERNAL => 0 ,

23 ROUTER BORDER => 1 ,

24 # r o u t e r− l e v e l e d g e l a b e l s

25 NLABELS RLINKS => 3 ,

26 RLINK INTERNAL => 0 ,

27 RLINK PP => 1 ,

28 RLINK PC => 2 ,

29 # AS− l e v e l node l a b e l s

30 NLEVELS => 5 ,

31 AS CORE => 0 ,

32 AS TRANSIT => 1 ,

33 AS OUTER => 2 ,

34 AS ISP => 3 ,

35 AS CUSTOMER => 4 ,

36 # r o u t e r− l e v e l e d g e l a b e l s

37 NLABELS ASLINKS => 2 ,

38 ASLINK PP => 0 ,

39 ASLINK PC => 1 ,

40 # r e s u l t p a r a m e t e r s

41 NPARAMETERS => 3 ,

42 COVERAGE => 0 ,

43 PROBED => 1 ,

44 PROBES => 2 ,

45 } ;

46 use XML: : Simple ;

47

48 #−− manage command− l i n e o p t i o n s

49

50 my $ a s f i l e ; # f i l e c o n t a i n i n g AS r e l a t i o n s h i p s

51 my $ r f i l e ; # f i l e c o n t a i n i n g cbgp r o u t e r l e v e l s c r i p t

52

53 my @nb sources ; # number o f s o u r c e s t o c h o o s e r a ndom l y a t e a c h l e v e l $ r o u t e r s b y l e v e l a n d t y p e

54 my @nb dests ; # number o f d e s t i n a t i o n s t o c h o o s e r a ndom l y a t e a c h l e v e l

55 my $nb c l u s t e r s ; # number o f s r c c l u s t e r s h a v i n g i n d i v i d u a l d e s t s e t s rem : i f s p e c i f i e d , i m p l i e s

c a p p i n g

56 my $ cap l im i t ; # max number o f s o u r c e s p e r d e s t i n a t i o n

57 my $ e x c l ud e s a s d e s t ; # d i s a b l e s o u r c e s f r om b e i n g c h o s e n a s d e s t i n a t i o n s

58

59 my $ i p s t r i n g ; # o u t p u t s s t r i n g IP a d d r e s s i n XML f i l e

60

61 my $debug ; # debug i n f o r m a t i o n

62 my $show info ; # g e n e r i c i n f o r m a t i o n

96

Appendix E.2 : Discovery setup script – setupDiscovery

63 my $help ; # show u s a g e

64 my $export=’ ’ ; # f i l e t o e x p o r t d i s c o v e r y

65

66 GetOptions (

67 # t o p o l o g y a t t r i b u t e s

68 ’ r f i l e | r = s ’ => \ $ r f i l e ,

69

70 # d i s c o v e r y a t t r i b u t e s

71 ’ s r c s | s = i { 1 0 } ’ => \@nb sources ,

72 ’ d e s t s | d = i { 1 0 } ’ => \@nb dests ,

73 ’ c l u s t e r s | n = i ’ => \ $nb c lu s t e r s ,

74 ’ cap | c = i ’ => \ $cap l im i t ,

75 ’ e x c l u d e _ s r c _ a s _ d e s t | e = i ’ => \ $ ex c l ude s a s d e s t ,

76 #e n c o d i n g o p t i o n s

77 ’ ip - s t r i n g ’ => \ $ ip s t r i ng ,

78

79 # d i s p l a y r e l a t e d o p t i o n s

80 ’ d e b u g ’ => \$debug ,

81 ’ show - i n f o | i ’ => \$show info ,

82 ’ h e l p |? ’ => \$help ,

83 ’ e x p o r t | x = s ’ => \$export

84) ;

85

86 i f (@ARGV!=1 or $help) {
87 die " \ n U s a g e : $0 [o p t i o n s] < a s _ t o p o l o g y _ f i l e >

88

89 By default , i n d e p e n d e n t d e s t i n a t i o n s e t s are g e n e r a t e d for s o u r c e s i n s i d e a s i n g l e c l u s t e r

90

91 R e q u i r e d :

92 - - s r c s (- s) < i0 i1 i2 i3 i4 b0 b1 b2 b3 b4 >\ t s p e c i f i e s the n u m b e r of s o u r c e s per t y p e / l e v e l

93 - - d e s t s (- d) < i0 i1 i2 i3 i4 b0 b1 b2 b3 b4 >\ t s p e c i f i e s the n u m b e r of d e s t i n a t i o n s per t y p e /

l e v e l

94

95 O p t i o n s :

96 - - r f i l e (- r) < file >\ t \ t s p e c i f i e s the u n d e r l y i n g c b g p r o u t e r t o p o l o g y of g i v e n AS t o p o l o g y

97 - - cap (- c) <n >\ t \ t \ t s p e c i f i e s the m a x i m u m n u m b e r of m o n i t o r s (s o u r c e s) per d e s t i n a t i o n

98 - - c l u s t e r s (- n) <n >\ t \ t s p e c i f i e s the n u m b e r of c l u s t e r s in w h i c h to d i v i d e m o n i t o r s

99 - - e x c l u d e _ s r c _ a s _ d e s t (- e) \ t e x c l u d e s the c h o i c e of s o u r c e n o d e s as p o t e n t i a l d e s t i n a t i o n s

100

101 - - ip - s t r i n g \ t e x p o r t s the XML f i l e w i t h IP a d d r e s s e s in d o t t e d f o r m a t

102

103 - - h e l p (-?) \ t t h i s p a g e

104 - - i n f o (- i) \ t s h o w i n f o r m a t i o n

105 - - d e b u g \ t s h o w d e b u g i n f o r m a t i o n \ n " ;

106 }
107 i f ($nb c l u s t e r s ne undef && $nb c lu s t e r s <=0){
108 die " N u m b e r of c l u s t e r s m u s t be >= 1\ n " ;

109 }
110 i f ($ c ap l im i t ne undef && $cap l imi t <=0){
111 die " C a p p i n g l i m i t m u s t be >= 1\ n " ;

112 }
113 i f (@nb sources !=10){
114 die " S o u r c e s n e e d to be s p e c i f i e d w i t h f o l l o w i n g o p t i o n : - - s r c s < i0 i1 i2 i3 i4 b0 b1 b2

b3 b4 >\ n " ;

115 }
116 i f (@nb dests !=10){
117 die " D e s t i n a t i o n s n e e d to be s p e c i f i e d w i t h f o l l o w i n g o p t i o n : - - d e s t s < i0 i1 i2 i3 i4 b0

b1 b2 b3 b4 >\ n " ;

118 }
119

120 #−− i m p o r t r o u t e r and AS t o p o l o g y i n f o r m a t i o n

121 print " (1) I m p o r t i n g t o p o l o g y i n f o r m a t i o n f r o m f i l e s \ n " i f $show info ;

122 my $ a s f i l e = $ARGV[0] ; # f i l e c o n t a i n i n g AS r e l a t i o n s h i p s

123 my $rtopo = f i l e t o a r r a y ($ r f i l e , $show info) ;

124 my $astopo = f i l e t o a r r a y ($ a s f i l e , $show info) ;

125 my $ a s l e v e l s = f i l e t o a r r a y ($ a s f i l e . " . c l a s s i f i e d " , $ show info) ;

126

127 #−− i n i t i a l i z e AS and r o u t e r g r a p h s (i f no r f i l e s p e c i f i e d u s e s 1 r o u t e r p e r AS)

128 print " \ n (2) I n i t i a l i z i n g i n t e r n a l t o p o l o g y r e p r e s e n t a t i o n \ n " i f $show info ;

129 my $asgraph = Graph : : Directed−>new () ;

130 my $rgraph = Graph : : Undirected−>new(countvertexed=>1,countedged=>1) ;

97

APPENDICES E : Perl source code

131 i n i t a s g r aph ($astopo , $asgraph , $ a s l e v e l s , $show info) ;

132 i n i t r g r a ph ($ r f i l e , $rtopo , $asgraph , $rgraph , $show info) ;

133

134 #−− i n i t i a l i z e d i s c o v e r y d a t a (s o u r c e s , d e s t i n a t i o n s , . .)

135 print " \ n (3) I n i t i a l i z i n g d i s c o v e r y d a t a \ n " i f $show info ;

136 my %discove ry ;

137 i f ($ c ap l im i t ne undef){ # CAPPED DISCOVERY (l i m i t e d number o f m o n i t o r s p e r d e s t i n a t i o n)

138 print " - C a p p i n g w i t h $ c a p _ l i m i t m o n i t o r s per d e s t i n a t i o n \ n " i f $show info ;

139 gene ra t e capped d i s cove ry () ;

140 }
141 e l s i f ($nb c l u s t e r s ne undef){ # CLUSTERED DISCOVERY (common d e s t i n a t i o n s e t s p e r c l u s t e r , w i t h o u t

c a p p i n g)

142 print " - C l u s t e r i n g i n t o $ n b _ c l u s t e r s c l u s t e r s w i t h o u t c a p p i n g \ n " i f $show info ;

143 g en e r a t e c l u s t e r e d d i s c o v e r y () ;

144 }
145 else { # INDEPENDENT DISCOVERY (i n d e p e n d e n t d e s t i n a t i o n s e t p e r s o u r c e , w i t h o u t c l u s t e r i n g)

146 print " - G e n e r a t i n g i n d e p e n d e n t d e s t i n a t i o n s s e t s for e a c h s o u r c e \ n " i f $show info ;

147 gene ra t e independent d i s cove ry () ;

148 }
149

150 #−− e x p o r t d i s c o v e r y d a t a t o XML f i l e

151 print " \ n (4) G e n e r a t i n g XML d i s c o v e r y d a t a \ n " i f $show info ;

152 my $xml = XML: : Simple−>new(RootName=>’ d i s c o v e r y ’ , KeyAttr=>{c l u s t e r=>’ id ’ , s r c=>’ ip ’}) ;

153 i f ($export){
154 open (EXPORT, " > $ e x p o r t ") ;

155 print EXPORT $xml−>XMLout(\%discove ry) ;

156 close EXPORT;

157 }
158 else {
159 print $xml−>XMLout(\%discove ry) ;

160 }
161

162 # −−−−−[g e n e r a t e i n d e p e n d e n t d i s c o v e r y]−−
163 # −−−
164

165 sub gene ra t e independent d i s cove ry {
166

167 # i n i t i a l i z e a r r a y s c o n t a i n i n g r o u t e r s f o r random s o u r c e and random d e s t i n a t i o n s e l e c t i o n

168 my @source s by l eve l and type = @{ s o r t r o u t e r s b y l e v e l a nd t yp e ($rgraph , $asgraph) } ; # r e f

t o a r r a y o f s o r t e d r o u t e r s

169 my @des t s by l eve l and type ;

170 i f ($ e x c l ud e s a s d e s t eq undef){ # bo th a r r a y s a r e i n d e p e n d a n t , s o u r c e s c an be c h o s e n a s

d e s t i n a t i o n s

171 @des t s by l eve l and type = @{ s o r t r o u t e r s b y l e v e l a nd t yp e ($rgraph , $asgraph) } ; #

r e f t o a r r a y o f s o r t e d r o u t e r s

172 }
173 else { # on c e s o u r c e s a r e c h o s e n , t h e y g e t r emoved f r om bo th a r r a y s , wh i c h makes t h e i r

d e s t i n a t i o n s e l e c t i o n i m p o s s i b l e

174 @des t s by l eve l and type = @source s by l eve l and type ;

175 }
176

177 #−− SOURCE SELECTION

178

179 # add s o u r c e s t o s o u r c e s e t a c c o r d i n g t o s p e c i f i e d l e v e l s

180 my @se l e c t ed sou r c e s ;

181 foreach my $t (0 . .NLABELS RNODES−1){
182 foreach my $ l (0 . .NLEVELS−1){
183 i f ($ s ou r c e s by l e v e l and type [$ l] [$t] ne undef) { # c h e c k t h a t c u r r e n t

l e v e l i s n ’ t empty

184 i f ($nb sources [$t∗NLEVELS+$ l] <= scalar @{
$ s ou r c e s by l e v e l and type [$ l] [$t]}) { # c h e c k s u f f i c i e n t

s o u r c e s a r e a v a i l a b l e

185 for (my $ i =0; $i<$nb sources [$t∗NLEVELS+$ l] ; $ i++){ # add

number o f r o u t e r s s p e c i f i e d a t command− l i n e

186 my $random index = rand (@{
$ s ou r c e s by l e v e l and type [$ l] [$t]}) ; #

random s e l e c t i o n f r om r o u t e r s e t

187 push (@se l e c t ed source s ,@{
$ s ou r c e s by l e v e l and type [$ l] [$t] } [

$random index]) ; # add i t t o s o u r c e s e t

98

Appendix E.2 : Discovery setup script – setupDiscovery

188 spl ice (@{ $ s ou r c e s by l e v e l and type [$ l] [$t]} ,

$random index , 1) ; # remove i t f r om r o u t e r s e t

189 }
190 }
191 else {
192 die " E r r o r : m a x i m u m of " . scalar @{

$ s ou r c e s by l e v e l and type [$ l] [$t] } . " s o u r c e s

a v a i l a b l e at t y p e $t l e v e l $l \ n " ;

193 }
194 }
195 e l s i f ($nb sources [$t∗NLEVELS+$ l] !=0) {
196 die " E r r o r : no s o u r c e s a v a i l a b l e at t y p e $t l e v e l $l \ n " ;

197 }
198 }
199 }
200 my $un ique source ;

201 i f (scalar @se l e c t ed sou r c e s == 1){
202 $un ique source=$ s e l e c t e d s o u r c e s [0] ;

203 }
204 # d i s t r i b u t e s o u r c e s i n t o s i n g l e c l u s t e r , s t a r t by random c l u s t e r t h e n modu l a r l o o p

205 while (@se l e c t ed sou r c e s) {
206 i f ($ i p s t r i n g){
207 $d i s covery{ c l u s t e r }{0}{ s r c }{ i n t2addre s s (pop(@se l e c t ed sou r c e s)) }={}; # put

d a t a i n main hash , l e a v e v a l u e u n d e f i n e d f o r now

208 }
209 else {
210 $d i s covery{ c l u s t e r }{0}{ s r c }{pop(@se l e c t ed sou r c e s) }={}; # put d a t a i n main

hash , l e a v e v a l u e u n d e f i n e d f o r now

211 }
212 }
213

214 #−− DESTINATION SELECTION

215

216 # add d e s t i n a t i o n t o d e s t i n a t i o n s e t a c c o r d i n g t o s p e c i f i e d l e v e l s

217 my @se l e c t ed de s t s ;

218 foreach my $t (0 . .NLABELS RNODES−1){
219 foreach my $ l (0 . .NLEVELS−1){
220 i f ($d e s t s by l e v e l and typ e [$ l] [$t] ne undef) { # c h e c k t h a t c u r r e n t

l e v e l i s n ’ t empty

221 i f ($nb dest s [$t∗NLEVELS+$ l] <= scalar @{ $d e s t s by l e v e l and typ e [

$ l] [$t]}) { # c h e c k s u f f i c i e n t d e s t s a r e a v a i l a b l e

222 for (my $ i =0; $i<$nb dest s [$t∗NLEVELS+$ l] ; $ i++){ # add

number o f r o u t e r s s p e c i f i e d a t command− l i n e

223 my $random index = rand (@{ $d e s t s by l e v e l and typ e

[$ l] [$t]}) ; # random s e l e c t i o n f r om r o u t e r

s e t

224 # i f t h e r e i s a s i n g l e s o u r c e and random d e s t i s

same a s s o u r c e , c h o o s e n e x t d e s t i n a t i o n i n

s e t (i f e x i s t s)

225 i f ($un ique source ne undef && (@{
$d e s t s by l e v e l and typ e [$ l] [$t] } [

$random index]==$unique source)){
226 i f (scalar @{ $d e s t s by l e v e l and typ e [$ l] [

$t]} > 1){
227 $random index=($random index+1)%@{

$d e s t s by l e v e l and typ e [$ l] [

$t] } ; # add n e x t d e s t i n a t i o n

228 }
229 else {
230 die " E r r o r : too m a n y d e s t i n a t i o n s

s p e c i f i e d at t y p e $t l e v e l

$l for u n i q u e s o u r c e \ n " ;

231 }
232 }
233 push (@se l e c t ed de s t s ,@{ $d e s t s by l e v e l and typ e [

$ l] [$t] } [$random index]) ; # add i t t o d e s t

s e t

234 spl ice (@{ $d e s t s by l e v e l and typ e [$ l] [$t]} ,

$random index , 1) ; # remove i t f r om r o u t e r s e t

235 }
236 }

99

APPENDICES E : Perl source code

237 else {
238 die " E r r o r : m a x i m u m of " . scalar @{

$d e s t s by l e v e l and typ e [$ l] [$t] } . " d e s t i n a t i o n s

a v a i l a b l e at t y p e $t l e v e l $l \ n " ;

239 }
240 }
241 e l s i f ($nb dest s [$t∗NLEVELS+$ l] !=0) {
242 die " E r r o r : no d e s t i n a t i o n s a v i l a b l e at t y p e $t l e v e l $l \ n " ;

243 }
244 }
245 }
246

247 #−− DESTINATION−TO−SOURCE ASSIGNEMENT

248

249 # a s s i g n d e s t i n a t i o n s t o s o u r c e s

250 while (@s e l e c t ed de s t s) {
251 foreach (keys(%{$d i s covery { c l u s t e r }{0}{ s r c }})){
252 i f (@s e l e c t ed de s t s) {
253 my $random index = rand (@s e l e c t ed de s t s) ; # s e l e c t random

d e s t i n a t i o n f r om s e t

254 i f ($ s e l e c t e d d e s t s [$random index] != $){ # don ’ t add d e s t i f same

i p a s c u r r e n t s o u r c e (no s e l f p r o b e)

255 i f ($ i p s t r i n g){
256 push (@{ $d i s covery { c l u s t e r }{0}{ s r c }{ $ }{d}} ,

i n t2addre s s ($ s e l e c t e d d e s t s [$random index])) ;

put d a t a i n main ha s h

257 }
258 else {
259 push (@{ $d i s covery { c l u s t e r }{0}{ s r c }{ $ }{d}} ,

$ s e l e c t e d d e s t s [$random index]) ; # put d a t a

i n main ha s h

260 }
261 spl ice (@se l e c t ed des t s , $random index , 1) ; # remove i t f r om

r o u t e r s e t

262 }
263 }
264 }
265 }
266 }
267

268 # −−−−−[g e n e r a t e c l u s t e r e d d i s c o v e r y]−−
269 # −−−
270 sub g en e r a t e c l u s t e r e d d i s c o v e r y {
271

272 # i n i t i a l i z e a r r a y s c o n t a i n i n g r o u t e r s f o r random s o u r c e and random d e s t i n a t i o n s e l e c t i o n

273 my @source s by l eve l and type = @{ s o r t r o u t e r s b y l e v e l a nd t yp e ($rgraph , $asgraph) } ; # r e f

t o a r r a y o f s o r t e d r o u t e r s

274 my @des t s by l eve l and type ;

275 i f ($ e x c l ud e s a s d e s t eq undef){ # bo th a r r a y s a r e i n d e p e n d a n t , s o u r c e s c an be c h o s e n a s

d e s t i n a t i o n s

276 @des t s by l eve l and type = @{ s o r t r o u t e r s b y l e v e l a nd t yp e ($rgraph , $asgraph) } ; #

r e f t o a r r a y o f s o r t e d r o u t e r s

277 }
278 else {
279 @des t s by l eve l and type = @source s by l eve l and type ;

280 }
281

282 #−− SOURCE SELECTION

283

284 # add s o u r c e s t o s o u r c e s e t a c c o r d i n g t o s p e c i f i e d l e v e l s

285 my @se l e c t ed sou r c e s ;

286 foreach my $t (0 . .NLABELS RNODES−1){
287 foreach my $ l (0 . .NLEVELS−1){
288 i f ($ s ou r c e s by l e v e l and type [$ l] [$t] ne undef) { # c h e c k t h a t c u r r e n t

l e v e l i s n ’ t empty

289 i f ($nb sources [$t∗NLEVELS+$ l] <= scalar @{
$ s ou r c e s by l e v e l and type [$ l] [$t]}) { # c h e c k s u f f i c i e n t

s o u r c e s a r e a v a i l a b l e

290 for (my $ i =0; $i<$nb sources [$t∗NLEVELS+$ l] ; $ i++){ # add

number o f r o u t e r s s p e c i f i e d a t command− l i n e

100

Appendix E.2 : Discovery setup script – setupDiscovery

291 my $random index = rand (@{
$ s ou r c e s by l e v e l and type [$ l] [$t]}) ; #

random s e l e c t i o n f r om r o u t e r s e t

292 push (@se l e c t ed source s ,@{
$ s ou r c e s by l e v e l and type [$ l] [$t] } [

$random index]) ; # add i t t o s o u r c e s e t

293 spl ice (@{ $ s ou r c e s by l e v e l and type [$ l] [$t]} ,

$random index , 1) ; # remove i t f r om r o u t e r s e t

294 }
295 }
296 else {
297 die " E r r o r : m a x i m u m of " . scalar @{

$ s ou r c e s by l e v e l and type [$ l] [$t] } . " s o u r c e s

a v a i l a b l e at t y p e $t l e v e l $l \ n " ;

298 }
299 }
300 e l s i f ($nb sources [$t∗NLEVELS+$ l] !=0) {
301 die " E r r o r : s o u r c e s s p e c i f i e d at e m p t y t y p e $t l e v e l $l \ n " ;

302 }
303 }
304 }
305

306

307 #−− DESTINATION SELECTION

308

309 # add d e s t i n a t i o n t o d e s t i n a t i o n s e t a c c o r d i n g t o s p e c i f i e d l e v e l s

310 my @se l e c t ed de s t s ;

311 foreach my $t (0 . .NLABELS RNODES−1){
312 foreach my $ l (0 . .NLEVELS−1){
313 i f ($d e s t s by l e v e l and typ e [$ l] [$t] ne undef) { # c h e c k t h a t c u r r e n t

l e v e l i s n ’ t empty

314 i f ($nb dest s [$t∗NLEVELS+$ l] <= scalar @{ $d e s t s by l e v e l and typ e [

$ l] [$t]}) { # c h e c k s u f f i c i e n t d e s t s a r e a v a i l a b l e

315 for (my $ i =0; $i<$nb dest s [$t∗NLEVELS+$ l] ; $ i++){ # add

number o f r o u t e r s s p e c i f i e d a t command− l i n e

316 my $random index = rand (@{ $d e s t s by l e v e l and typ e

[$ l] [$t]}) ; # random s e l e c t i o n f r om r o u t e r

s e t

317 push (@se l e c t ed de s t s ,@{ $d e s t s by l e v e l and typ e [

$ l] [$t] } [$random index]) ; # add i t t o d e s t

s e t

318 spl ice (@{ $d e s t s by l e v e l and typ e [$ l] [$t]} ,

$random index , 1) ; # remove i t f r om r o u t e r s e t

319 }
320 }
321 else {
322 die " E r r o r : m a x i m u m of " . scalar @{

$d e s t s by l e v e l and typ e [$ l] [$t] } . " d e s t i n a t i o n s

a v a i l a b l e at t y p e $t l e v e l $l \ n " ;

323 }
324 }
325 e l s i f ($nb dest s [$t∗NLEVELS+$ l] !=0) {
326 die " E r r o r : d e s t i n a t i o n s s p e c i f i e d at e m p t y t y p e $t l e v e l $l \ n " ;

327 }
328 }
329 }
330

331 #−− SOURCE−TO−CLUSTER AND DESTINATION−TO−CLUSTER ASSIGNEMENTS

332

333 # d i s t r i b u t e s o u r c e s i n t o c l u s t e r s , s t a r t by random c l u s t e r t h e n modu l a r l o o p

334 my $c = int rand ($nb c lu s t e r s −1) ;

335 while (@se l e c t ed sou r c e s) {
336 my $random index = rand (@se l e c t ed sou r c e s) ;

337 i f ($ i p s t r i n g){
338 $d i s covery{ c l u s t e r }{$c}{ s r c }{ i n t2addre s s ($ s e l e c t e d s o u r c e s [$random index])

}={}; # put d a t a i n main ha sh

339 }
340 else {
341 $d i s covery{ c l u s t e r }{$c}{ s r c }{ $ s e l e c t e d s ou r c e s [$random index]}={} ; # put

d a t a i n main ha sh

342 }

101

APPENDICES E : Perl source code

343 spl ice (@se l e c t ed source s , $random index , 1) ; # remove i t f r om r o u t e r s e t

344 $c = ($c+1)%$nb c l u s t e r s ;

345 }
346

347 # a s s i g n d e s t i n a t i o n s t o c l u s t e r s , s t a r t by random c l u s t e r t h e n modu l a r l o o p

348 my $c = int rand ($nb c lu s t e r s −1) ;

349 while (@s e l e c t ed de s t s) {
350 my $random index = rand (@s e l e c t ed de s t s) ;

351 i f ($ i p s t r i n g){
352 push (@{ $d i s covery { c l u s t e r }{$c}{ cdes t }} , i n t2addre s s ($ s e l e c t e d d e s t s [

$random index])) ; # put d a t a i n main ha sh

353 }
354 else {
355 push (@{ $d i s covery { c l u s t e r }{$c}{ cdes t }} , $ s e l e c t e d d e s t s [$random index]) ; #

put d a t a i n main ha s h

356 }
357 spl ice (@se l e c t ed des t s , $random index , 1) ; # remove i t f r om r o u t e r s e t

358 $c = ($c+1)%$nb c l u s t e r s ;

359 }
360 }
361

362 # −−−−−[g e n e r a t e c a p p e d d i s c o v e r y]−−
363 # −−−
364 sub gene ra t e capped d i s cove ry {
365

366 # i n i t i a l i z e a r r a y s c o n t a i n i n g r o u t e r s f o r random s o u r c e and random d e s t i n a t i o n s e l e c t i o n

367 my @source s by l eve l and type = @{ s o r t r o u t e r s b y l e v e l a nd t yp e ($rgraph , $asgraph) } ; # r e f

t o a r r a y o f s o r t e d r o u t e r s

368 my @des t s by l eve l and type ;

369 i f ($ e x c l ud e s a s d e s t eq undef){ # bo th a r r a y s a r e i n d e p e n d a n t , s o u r c e s c an be c h o s e n a s

d e s t i n a t i o n s

370 @des t s by l eve l and type = @{ s o r t r o u t e r s b y l e v e l a nd t yp e ($rgraph , $asgraph) } ; #

r e f t o a r r a y o f s o r t e d r o u t e r s

371 }
372 else {
373 @des t s by l eve l and type = @source s by l eve l and type ;

374 }
375

376 #−− SOURCE SELECTION

377

378 # add s o u r c e s t o s o u r c e s e t a c c o r d i n g t o s p e c i f i e d l e v e l s

379 my @se l e c t ed sou r c e s ;

380 foreach my $t (0 . .NLABELS RNODES−1){
381 foreach my $ l (0 . .NLEVELS−1){
382 i f ($ s ou r c e s by l e v e l and type [$ l] [$t] ne undef) { # c h e c k t h a t c u r r e n t

l e v e l i s n ’ t empty

383 i f ($nb sources [$t∗NLEVELS+$ l] <= scalar @{
$ s ou r c e s by l e v e l and type [$ l] [$t]}) { # c h e c k s u f f i c i e n t

s o u r c e s a r e a v a i l a b l e

384 for (my $ i =0; $i<$nb sources [$t∗NLEVELS+$ l] ; $ i++){ # add

number o f r o u t e r s s p e c i f i e d a t command− l i n e

385 my $random index = rand (@{
$ s ou r c e s by l e v e l and type [$ l] [$t]}) ; #

random s e l e c t i o n f r om r o u t e r s e t

386 push (@se l e c t ed source s ,@{
$ s ou r c e s by l e v e l and type [$ l] [$t] } [

$random index]) ; # add i t t o s o u r c e s e t

387 spl ice (@{ $ s ou r c e s by l e v e l and type [$ l] [$t]} ,

$random index , 1) ; # remove i t f r om r o u t e r s e t

388 }
389 }
390 else {
391 die " E r r o r : m a x i m u m of " . scalar @{

$ s ou r c e s by l e v e l and type [$ l] [$t] } . " s o u r c e s

a v a i l a b l e at t y p e $t l e v e l $l \ n " ;

392 }
393 }
394 e l s i f ($nb sources [$t∗NLEVELS+$ l] !=0) {
395 die " E r r o r : s o u r c e s s p e c i f i e d at e m p t y t y p e $t l e v e l $l \ n " ;

396 }
397 }

102

Appendix E.2 : Discovery setup script – setupDiscovery

398 }
399

400 #−− DESTINATION SELECTION

401

402 # add d e s t i n a t i o n s t o d e s t i n a t i o n s e t a c c o r d i n g t o s p e c i f i e d l e v e l s

403 my @se l e c t ed de s t s ;

404 foreach my $t (0 . .NLABELS RNODES−1){
405 foreach my $ l (0 . .NLEVELS−1){
406 i f ($d e s t s by l e v e l and typ e [$ l] [$t] ne undef) { # c h e c k t h a t c u r r e n t

l e v e l i s n ’ t empty

407 i f ($nb dest s [$t∗NLEVELS+$ l] <= scalar @{ $d e s t s by l e v e l and typ e [

$ l] [$t]}) { # c h e c k s u f f i c i e n t d e s t s a r e a v a i l a b l e

408 for (my $ i =0; $i<$nb dest s [$t∗NLEVELS+$ l] ; $ i++){ # add

number o f r o u t e r s s p e c i f i e d a t command− l i n e

409 my $random index = rand (@{ $d e s t s by l e v e l and typ e

[$ l] [$t]}) ; # random s e l e c t i o n f r om r o u t e r

s e t

410 push (@se l e c t ed de s t s ,@{ $d e s t s by l e v e l and typ e [

$ l] [$t] } [$random index]) ; # add i t t o d e s t

s e t

411 spl ice (@{ $d e s t s by l e v e l and typ e [$ l] [$t]} ,

$random index , 1) ; # remove i t f r om r o u t e r s e t

412 }
413 }
414 else {
415 die " E r r o r : m a x i m u m of " . scalar @{

$d e s t s by l e v e l and typ e [$ l] [$t] } . " d e s t i n a t i o n s

a v a i l a b l e at t y p e $t l e v e l $l \ n " ;

416 }
417 }
418 e l s i f ($nb dest s [$t∗NLEVELS+$ l] !=0) {
419 die " E r r o r : d e s t i n a t i o n s s p e c i f i e d at e m p t y t y p e $t l e v e l $l \ n " ;

420 }
421 }
422 }
423

424 #−− SOURCE−TO−CLUSTER , DESTINATION−TO−CLUSTER AND DESTINATION−TO−SOURCE ASSIGNEMENTS

425

426 # d i s t r i b u t e s o u r c e s i n t o c l u s t e r s , s t a r t by random c l u s t e r t h e n modu l a r l o o p

427 my $c = int rand ($nb c lu s t e r s −1) ;

428 i f ($nb c l u s t e r s eq undef){
429 $nb c l u s t e r s =1;

430 }
431 while (@se l e c t ed sou r c e s) {
432 my $random index = rand (@se l e c t ed sou r c e s) ;

433 i f ($ i p s t r i n g){
434 $d i s covery{ c l u s t e r }{$c}{ s r c }{ i n t2addre s s ($ s e l e c t e d s o u r c e s [$random index])

}={}; # put d a t a i n main ha sh

435 }
436 else {
437 $d i s covery{ c l u s t e r }{$c}{ s r c }{ $ s e l e c t e d s ou r c e s [$random index]}={} ; # put

d a t a i n main ha sh

438 }
439 spl ice (@se l e c t ed source s , $random index , 1) ; # remove i t f r om r o u t e r s e t

440 $c = ($c+1)%$nb c l u s t e r s ;

441 }
442

443 # a s s i g n e a c h r andom l y c h o s e n d e s t i n a t i o n t o e a c h c l u s t e r , t h e n a s s i g n i t t o $ c a p l i m i t

r a ndom l y c h o s e n s o u r c e s f r om t h i s c l u s t e r

444 my $c = int rand ($nb c lu s t e r s −1) ;

445 while (@s e l e c t ed de s t s) {
446

447 my @sources= keys %{$d i s covery { c l u s t e r }{$c}{ s r c }} ;

448 my @chosen sources ;

449

450 i f (scalar @sources > $ cap l im i t){
451 @chosen sources = random n from array ($cap l im i t ,\ @sources) ;

452 }
453 else { # a v a i l a b l e s o u r c e s <= cap l i m i t (c ap l i m i t b e c ome s number o f m o n i t o r s i n

c l u s t e r)

454 @chosen sources = @sources ;

103

APPENDICES E : Perl source code

455 }
456

457 my $random dest index = rand (@s e l e c t ed de s t s) ; # c h o o s e d e s t r a ndom l y

458 foreach (@chosen sources){ # add i t t o e a c h c h o s e n s o u r c e

459 i f ($ i p s t r i n g){
460 push (@{ $d i s covery { c l u s t e r }{$c}{ s r c }{ $ }{d}} , i n t2addre s s (

$ s e l e c t e d d e s t s [$random dest index])) ; # put d a t a i n main

ha sh

461 }
462 else {
463 push (@{ $d i s covery { c l u s t e r }{$c}{ s r c }{ $ }{d}} , $ s e l e c t e d d e s t s [

$random dest index]) ; # put d a t a i n main ha sh

464 }
465 }
466 spl ice (@se l e c t ed des t s , $random dest index , 1) ; # remove d e s t f r om s e t

467

468 $c = ($c+1)%$nb c l u s t e r s ; # g o t o n e x t c l u s t e r

469 }
470 }

E.3 Discovery simulation script – performDiscovery

1 #! / u s r / b i n / p e r l

2 # ===

3 # D i s c o v e r y s i m u l a t i o n s c r i p t

4 # @(#) p e r f o r m D i s c o v e r y

5 # @autho r G r e g o r y C u l p i n

6 # @date 0 8 / 1 2 / 2 0 0 5

7 # @ l a s t d a t e 1 2 / 0 5 / 2 0 0 6

8 # ===

9

10 use s t r i c t ;

11 use l i b " . " ;

12 use CBGP 0 . 4 ;

13 use Math : : BigInt ;

14 use Data : : Dumper ;

15 use Graph : : Directed ;

16 use Graph : : Undirected ;

17 use Getopt : : Long ;

18 use constant {
19 # cbgp pa th

20 CBGP PATH => ’ c b g p ’ ,

21 # r o u t e r− l e v e l node l a b e l s

22 NLABELS RNODES => 2 ,

23 ROUTER INTERNAL => 0 ,

24 ROUTER BORDER => 1 ,

25 # r o u t e r− l e v e l e d g e l a b e l s

26 NLABELS RLINKS => 3 ,

27 RLINK INTERNAL => 0 ,

28 RLINK PP => 1 ,

29 RLINK PC => 2 ,

30 # AS− l e v e l node l a b e l s

31 NLEVELS => 5 ,

32 AS CORE => 0 ,

33 AS TRANSIT => 1 ,

34 AS OUTER => 2 ,

35 AS ISP => 3 ,

36 AS CUSTOMER => 4 ,

37 # r o u t e r− l e v e l e d g e l a b e l s

38 NLABELS ASLINKS => 2 ,

39 ASLINK PP => 0 ,

40 ASLINK PC => 1 ,

41 # r e s u l t p a r a m e t e r s

42 NPARAMETERS => 3 ,

43 COVERAGE => 0 ,

44 PROBED => 1 ,

45 PROBES => 2

104

Appendix E.3 : Discovery simulation script – performDiscovery

46 } ;

47 use topology ;

48 use t o o l s ;

49 use doub le t r ee ;

50 use XML: : Simple ;

51

52 # −−
53 # Main p r og r am

54 # −−
55

56 #−− manage command− l i n e o p t i o n s

57

58 my $ r f i l e=’ ’ ; # f i l e c o n t a i n i n g cbgp r o u t e r l e v e l s c r i p t

59

60 my $u s e t r a c e r ou t e=’ ’ ; # i f o p t i o n s p e c i f i e d , u s e t r a c e r o u t e s a l g o r i t h m

61 my $hop eval=’ 10 ’ ; # s p e c i f i e s number o f d e s t i n a t i o n s u s e d t o e v a l u a t e s o u r c e hop

62 my $p=’ .05 ’ ; # s p e c i f i e s p r o b a b i l i t y (%) o f h i t t i n g a d e s t i n a t i o n on f i r s t p r o b e

63

64 my $max propagations=’ 50 ’ ; # max number o f p r o p a g a t i o n s b e f o r e r e l o a d i n g cbgp p r o c e s s

65

66 my $bloom capacity=’ 1 0 0 0 ’ ;

67 my $bloom error=’ .01 ’ ;

68 my $nobloom=’ ’ ;

69

70 my $help=’ ’ ; # show h e l p

71 my $debug=’ ’ ; # debug i n f o r m a t i o n

72 my $show info=’ ’ ; # g e n e r i c i n f o r m a t i o n

73 my $ s h ow de t a i l e d r e s u l t s=’ ’ ; # show d e t a i l e d r e s u l t s

74

75 my $xml export=’ ’ ;

76

77 GetOptions (

78 # t o p o l o g y a t t r i b u t e s

79 ’ r f i l e | r = s ’ => \ $ r f i l e ,

80

81 # d i s c o v e r y a t t r i b u t e s

82 ’ t r a c e r o u t e | t ’ => \ $use t race route ,

83 ’ hop - e v a l | h = i ’ => \$hop eval ,

84 ’ p = f ’ => \$p ,

85 ’ bloom - c a p a c i t y | c = i ’ => \$bloom capacity ,

86 ’ bloom - e r r o r | e = f ’ => \$bloom error ,

87 ’ n o b l o o m | n ’ => \$nobloom ,

88

89 # cbgp r e l a t e d o p t i o n s

90 ’ max - p r o p | m = i ’ => \$max propagations ,

91

92 # d i s p l a y r e l a t e d o p t i o n s

93 ’ h e l p |? ’ => \$help ,

94 ’ d e b u g ’ => \$debug ,

95 ’ show - i n f o | i n f o | i ’ => \$show info ,

96 ’ show - d e t a i l e d - r e s u l t s | d ’ => \ $ show de t a i l e d r e su l t s ,

97 ’ e x p o r t | x = s ’ => \$xml export

98) ;

99

100 i f (@ARGV!=2 or $help) {
101 die " \ n U s a g e : $0 [o p t i o n s] < a s _ t o p o l o g y _ f i l e > < x m l _ d i s c o v e r y _ f i l e >

102

103 O p t i o n s :

104 - - r f i l e (- r) < file >\ t \ t s p e c i f i e s the u n d e r l y i n g c b g p r o u t e r t o p o l o g y of g i v e n AS t o p o l o g y

105 - - hop - e v a l (- h) <n >\ t \ t s p e c i f i e s the n u m b e r of d e s t i n a t i o n s u s e d to e v a l u a t e i n i t i a l hop (

d e f a u l t : $ h o p _ e v a l)

106 - - hit - p r o b a b i l i t y (- p) <f >\ t s p e c i f i e s the p r o b a b i l i t y p of h i t t i n g a d e s t i n a t i o n on the f i r s t

p r o b e (d e f a u l t : $p)

107 - - max - p r o p a g a t i o n s (- m) <n >\ t s p e c i f i e s the m a x i m u m n u m b e r of p r e f i x e s to be p r o p a g a t e d in c b g p

b e f o r e r e s t a r t i n g it (d e f a u l t : $ m a x _ p r o p a g a t i o n s)

108

109 - - bloom - c a p a c i t y (- c) <n >\ t s p e c i f i e s the c a p a c i t y of b l o o m f i l t e r s u s e d for e n c o d i n g g l o b a l s e t s

(d e f a u l t : $ b l o o m _ c a p a c i t y)

110 - - bloom - e r r o r (- e) <f > \ t s p e c i f i e s the e r r o r r a t e of b l o o m f i l t e r s u s e d for e n c o d i n g g l o b a l s e t s

(d e f a u l t : $ b l o o m _ e r r o r)

111 - - n o b l o o m (- n) \ t \ t \ t don ’ t use b l o o m f i l t e r s for e n c o d i n g g l o b a l s e t s

105

APPENDICES E : Perl source code

112

113 - - t r a c e r o u t e (- t) \ t \ t don ’ t use d o u b l e t r e e d i s c o v e r y but s i m p l e t r a c e r o u t e s

114 - - e x p o r t (- x < file >) \ t \ t e x p o r t s the u p d a t e d d i s c o v e r y s t a t e

115

116 - - h e l p (-?) \ t \ t \ t t h i s p a g e

117 - - show - i n f o (- i) \ t \ t s h o w i n f o r m a t i o n

118 - - show - d e t a i l e d - r e s u l t s (- d) \ t s h o w d e t a i l e d r e s u l t i n f o r m a t i o n

119 - - d e b u g \ t \ t \ t s h o w d e b u g i n f o r m a t i o n \ n "

120 }
121

122 my $n=1;

123 print " \ n (" . $n++.") I m p o r t i n g d i s c o v e r y d a t a \ n " i f $show info ;

124 my $ a s f i l e = $ARGV[0] ; # f i l e c o n t a i n i n g AS r e l a t i o n s h i p s

125 my $ d f i l e = $ARGV[1] ; # XML f i l e c o n t a i n i n g d i s c o v e r y p l a n

126 my $rtopo = f i l e t o a r r a y ($ r f i l e , $show info) ;

127 my $astopo = f i l e t o a r r a y ($ a s f i l e , $show info) ;

128 my $ a s l e v e l s = f i l e t o a r r a y ($ a s f i l e . " . c l a s s i f i e d ") ;

129

130 #−− i n i t i a l i z e AS and r o u t e r g r a p h s (i f no r f i l e s p e c i f i e d u s e s 1 r o u t e r p e r AS)

131 print " \ n (" . $n++.") I n i t i a l i z i n g i n t e r n a l t o p o l o g y r e p r e s e n t a t i o n \ n " i f $show info ;

132 my $asgraph = Graph : : Directed−>new () ;

133 my $rgraph = Graph : : Undirected−>new(countvertexed=>1,countedged=>1) ;

134

135 i n i t a s g r aph ($astopo , $asgraph , $ a s l e v e l s , $show info) ;

136 i n i t r g r a ph ($ r f i l e , $rtopo , $asgraph , $rgraph , $show info) ;

137

138 #−− i n i t i a l i z e d i s c o v e r y d a t a (s o u r c e s , d e s t i n a t i o n s , . .)

139 print " \ n (" . $n++.") I n i t i a l i z i n g d i s c o v e r y d a t a \ n " i f $show info ;

140 my $xs1 = XML: : Simple−>new(f o r c e a r r ay=>1,suppressempty=>1,KeyAttr=>{c l u s t e r=>’ id ’ , s r c=>’ ip ’}) ;

141 my $d i s covery = $xs1−>XMLin($ d f i l e) ;

142

143 #−− f e e d c o n f i g u r a t i o n and s t a r t s i m u l a t i o n

144 print " \ n (" . $n++.") S e t t i n g up C - BGP s i m u l a t o r \ n " i f $show info ;

145 my $cbgp re f = \CBGP−>new(CBGP PATH) ;

146 $$cbgp re f−>spawn ;

147 die i f $$cbgp re f−>send (" set a u t o f l u s h on \ n ") ;

148 cbgp setup ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) ;

149

150 #−− r un baby run

151 print " \ n (" . $n++.") D i s c o v e r y p r o c e s s \ n " i f $show info ;

152 i f (! $u s e t r a c e r ou t e) {
153 print " - E v a l u a t i n g i n i t i a l h o p s for e a c h s o u r c e \ n " i f $show info ;

154 compute hops ($cbgp re f , $d i scovery , $p , $hop eval , $max propagations , $ a s f i l e , $ r f i l e , $rtopo ,

$debug) ;

155 print " - P e r f o r m i n g d o u b l e t r e e a l g o r i t h m \ n " i f $show info ;

156 doub le t r ee ($cbgp re f , $rgraph , $discovery , $ r f i l e , $ a s f i l e , $rtopo , $max propagations ,

$bloom capacity , $bloom error , $nobloom , $debug) ;

157 }
158 else {
159 print " - P e r f o r m i n g t r a c e r o u t e s \ n " i f $show info ;

160 t r a c e r ou t e ($cbgp re f , $rgraph , $discovery , $ r f i l e , $ a s f i l e , $rtopo , $max propagations , $debug) ;

161 }
162 $$cbgp re f−>f i n a l i z e ;

163 while (my $re s= $$cbgp re f−>expect (0)){
164 die " E r r o r : e x p e c t \" $ r e s \"\ n " ;

165 }
166

167 i f ($xml export){
168 print " \ n (" . $n++.") E x p o r t i n g d i s c o v e r y s t a t e to $ x m l _ e x p o r t \ n " ;

169 open (EXPORT, " > $ x m l _ e x p o r t ") ;

170 print EXPORT $xs1−>XMLout($discovery , RootName=>’ d i s c o v e r y ’ , KeyAttr=>{c l u s t e r=>’ id ’ , s r c=>’

ip ’}) ;

171 close EXPORT;

172 }
173 #−− compute d i s c o v e r y p e r f o r m a n c e

174 print " \ n (" . $n++.") C o m p u t i n g d i s c o v e r y p e r f o r m a n c e v a l u e s \ n " i f $show info ;

175 compute performance ($rgraph , $discovery , $asgraph) ;

176 print " \ n (" . $n++.") F i n i s h e d \ n " i f $show info ;

177

178 # −−−−−[c o m p u t e p e r f o r m a n c e]−−−
179 # −−−

106

Appendix E.3 : Discovery simulation script – performDiscovery

180 sub compute performance

181 {
182 my ($rgraph , $sd , $asgraph) = @ ;

183

184 # GLOBAL INTERFACE AND LINK RESULTS

185 # compute number o f u n i q u e i n t e r f a c e s and l i n k s p r o b e d d u r i n g d i s c o v e r y (n e e d e d f o r

c o v e r a g e)

186 my $p r ob ed i f s = 0 ;

187 my $probed l ink s = 0 ;

188 foreach ($rgraph−>un i qu e v e r t i c e s){
189 i f ($rgraph−>ge t ve r t ex count ($) > 1){
190 $p r ob ed i f s++;

191 }
192 }
193 foreach ($rgraph−>unique edges){
194 i f ($rgraph−>get edge count (@{ $ } [0] ,@{ $ } [1]) > 1){
195 $probed l ink s++;

196 }
197 }
198

199 # c o u n t r e d u n d a n t s o u r c e s i n p r o b e d i n t e r f a c e s f o r c o v e r a g e c o m p u t a t i o n (a r e o t h e r w i s e

c o u n t e d m u l t i p l e t i m e s)

200 my $scount=0;

201 my $rcount=0;

202 foreach my $c (keys %{$sd−>{c l u s t e r }}){
203 foreach my $s (keys %{$sd−>{c l u s t e r }{$c}{ s r c }}){
204 $scount++;

205 # i f c u r r e n t s o u r c e h a s b e en p r o b e d a t l e a s t once , do n o t c o n s i d e r i t a s

new d i s c o v e r y (= r e d u n d a n t)

206 i f ($rgraph−>ge t ve r t ex count ($)>1){
207 $rcount++;

208 }
209 }
210 }
211 # compute c o v e r a g e s s u c h a s known i n t e r f a c e s = s r c U d i s c = s r c +d i s c −(d i s c /\ s r c) , and

s t o r e i n d a t a ha s h

212 # rem : number o f i n t e r f a c e s e x c l u d e known s o u r c e s and d e s t i n a t i o n s

213 my $ icov = ($scount + $p robed i f s − $rcount) / $rgraph−>un i qu e v e r t i c e s ;

214 my $ lcov= $probed l ink s / $rgraph−>unique edges ;

215

216 # compute t o t a l number o f p r o b e s on v e r t i c e s and e d g e s , and s t o r e i n d a t a ha sh

217 # rem : number o f p r o b e s e x c l u d e s s e l f −s o u r c e p r o b e s , bu t i n c l u d e s d e s t i n a t i o n p r o b e s

218 my $ iprobes = $rgraph−>v e r t i c e s − $rgraph−>un i qu e v e r t i c e s ;

219 my $ lprobes = $rgraph−>edges − $rgraph−>unique edges ;

220

221 # DETAILED ROUTER−LEVEL INTERFACE RESULTS

222 my @ in t e r f a c e r e s u l t s ;

223 my @d i s c o v e r e d i n t e r f a c e s p e r l e v e l ;

224

225 # f i r s t p a s s : p e r− l e v e l c o m p u t a t i o n o f ” p r o b e d ” and ” p r o b e s ” v a l u e s

226 foreach ($rgraph−>un i qu e v e r t i c e s){
227 my $ l = $asgraph−>ge t v e r t ex we i gh t ($ >>16) ;

228 my $nb probes = $rgraph−>ge t ve r t ex count ($)−1;

229 my $c = $rgraph−>ge t v e r t ex we i gh t ($) ; # i n t e r n a l o r b o r d e r

230 i f ($nb probes >0){ # p r o b e d a t l e a s t o n c e

231 $ i n t e r f a c e r e s u l t s [PROBED] [$c] [$ l]++; # i n c r e m e n t ” p r o b e d ” c o u n t e r by 1

232 $ i n t e r f a c e r e s u l t s [PROBES] [$c] [$ l]+=$nb probes ; # i n c r e m e n t ” p r o b e s ”

c o u n t e r by n b p r o b e s

233 }
234 $ d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c] [$ l]++; # upda t e l e v e l c o u n t e r f o r c o v e r a g e

c o m p u t a t i o n

235 }
236

237 # compute number o f r e d u n d a n t s o u r c e s i n p r o b e d i n t e r f a c e s (n e e d e d f o r c o v e r a g e)

238 my @scoun t p e r l e v e l and c l a s s ;

239 my @rcoun t p e r l e v e l and c l a s s ;

240

241 foreach my $c l (keys %{$sd−>{c l u s t e r }}){
242 foreach my $s (keys %{$sd−>{c l u s t e r }{ $c l }{ s r c }}){
243 my $c = $rgraph−>ge t v e r t ex we i gh t ($s) ;

244 my $ l = $asgraph−>ge t v e r t ex we i gh t ($s>>16) ;

107

APPENDICES E : Perl source code

245 my $nb probes = $rgraph−>ge t ve r t ex count ($s)−1;

246 $ s c o un t p e r l e v e l a nd c l a s s [$c] [$ l]++;

247 # i f c u r r e n t s o u r c e h a s b e e n p r o b e d a t l e a s t once , do n o t c o n s i d e r i t a s

new d i s c o v e r y (= r e d u n d a n t)

248 i f ($nb probes >0){
249 $ r c o un t p e r l e v e l a nd c l a s s [$c] [$ l]++;

250 }
251 }
252 }
253

254 # s e c o n d p a s s : p e r− l e v e l and pe r−c l a s s ” c o v e r a g e ” c o m p u t a t i o n

255 foreach my $c (0 . .NLABELS RNODES−1){ # f o r e a c h r o u t e r c l a s s

256 i f (exists $ d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c]) { # c h e c k non empty c l a s s

257 foreach my $ l (0 . . (scalar @{ $ d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c]}−1)) { #

f o r e a c h AS l e v e l

258 i f (! exists $ i n t e r f a c e r e s u l t s [PROBED] [$c] [$ l]) {
259 $ i n t e r f a c e r e s u l t s [PROBED] [$c] [$ l]=0; # a s s i g n z e r o v a l u e s

t o u n d e f i n e d ” p r o b e d ” param

260 }
261 i f (! exists $ i n t e r f a c e r e s u l t s [PROBES] [$c] [$ l]) {
262 $ i n t e r f a c e r e s u l t s [PROBES] [$c] [$ l]=0; # a s s i g n z e r o v a l u e s

t o u n d e f i n e d ” p r o b e s ” param

263 }
264 i f (exists $ d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c] [$ l] &&

$d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c] [$ l] !=0) { # compute

c o v e r a g e i f c u r r e n t l e v e l c o n t a i n s i n t e r f a c e s

265 $ i n t e r f a c e r e s u l t s [COVERAGE] [$c] [$ l]=($ i n t e r f a c e r e s u l t s [

PROBED] [$c] [$ l]+ $ s c o un t p e r l e v e l a nd c l a s s [$c] [$ l]−
$ r c o un t p e r l e v e l a nd c l a s s [$c] [$ l]) /

$ d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c] [$ l] ;

266 }
267 else { # no r o u t e r s i n l e v e l (i r r e l e v a n t)

268 $ i n t e r f a c e r e s u l t s [COVERAGE] [$c] [$ l]=undef ;

269 }
270 }
271 }
272 }
273 # DETAILED ROUTER−LEVEL LINK RESULTS

274

275 #−− compute i n t e r − l e v e l r o u t e r l i n k s d i s c o v e r e d

276 my @in t e r l e v e l d i s c o v e r y ;

277

278 # i n i t t o a l l z e r o e s

279 foreach my $ l1 (0 . .NLEVELS−1){
280 foreach my $ l2 (0 . .NLEVELS−1){
281 foreach my $p (0 . . NLABELS RLINKS−1){
282 $ i n t e r l e v e l d i s c o v e r y [$ l1] [$ l 2] [$p]=0;

283 }
284 }
285 }
286 # compute l e v e l v a l u e s

287 foreach ($rgraph−>unique edges){
288 i f ($rgraph−>get edge count (@{ $ } [0] ,@{ $ } [1]) >1){
289 my $as1 = @{ $ }[0] > >16;

290 my $as2 = @{ $ }[1] > >16;

291 i f ($as1==$as2){ # i n t e r n a l l i n k

292 my $ l = $asgraph−>ge t v e r t ex we i gh t ($as1) ;

293 $ i n t e r l e v e l d i s c o v e r y [$ l] [$ l] [RLINK INTERNAL]++;

294 }
295 else { # i n t e r −a s l i n k

296 # g e t l e v e l t o wh i c h b e l o n g s e a c h r o u t e r

297 my $ l1 = $asgraph−>ge t v e r t ex we i gh t ($as1) ;

298 my $ l2 = $asgraph−>ge t v e r t ex we i gh t ($as2) ;

299 # rem : c o n s i d e r i n d i v i d u a l r o u t e r s o f an AS o b e y s i t s p o l i c i e s

300 i f ($asgraph−>has edge ($as1 , $as2)){
301 i f ($asgraph−>has edge ($as2 , $as1)){ # edg e i n AS g r a ph i s

b i d i r e c t i o n a l a s1<−>a s 2

302 # add p e e r l i n k t w i c e (o n c e f o r e a c h r o u t e r ’ s

l e v e l)

303 $ i n t e r l e v e l d i s c o v e r y [$ l1] [$ l 2] [RLINK PP]+=0.5;

304 $ i n t e r l e v e l d i s c o v e r y [$ l2] [$ l 1] [RLINK PP]+=0.5;

108

Appendix E.3 : Discovery simulation script – performDiscovery

305 }
306 else { # edg e d i r e c t i o n i n AS g r a ph i s a s1−>a s 2

307 $ i n t e r l e v e l d i s c o v e r y [$ l1] [$ l 2] [RLINK PC]++;

308 }
309 }
310 e l s i f ($asgraph−>has edge ($as2 , $as1)){ # edg e d i r e c t i o n i n AS

g r a ph i s a s1<−a s 2

311 $ i n t e r l e v e l d i s c o v e r y [$ l2] [$ l 1] [RLINK PC]++;

312 }
313 }
314 }
315 }
316 # compute t o t a l s

317 foreach my $ l1 (0 . .NLEVELS−1){ # p e r l i n e t o t a l s , s t o r e d i n e x t r a co lumn

318 foreach my $ l2 (0 . .NLEVELS−1){
319 foreach my $p (0 . . NLABELS RLINKS−1){
320 $ i n t e r l e v e l d i s c o v e r y [$ l1] [NLEVELS] [$p]+=$ i n t e r l e v e l d i s c o v e r y [

$ l1] [$ l 2] [$p] ;

321 }
322 }
323 }
324 foreach my $ l2 (0 . .NLEVELS){ # p e r co lumn t o t a l s (i n c l u d i n g l i n e sum) , s t o r e d i n e x t r a

l i n e

325 foreach my $ l1 (0 . .NLEVELS−1){
326 foreach my $p (0 . . NLABELS RLINKS−1){
327 $ i n t e r l e v e l d i s c o v e r y [NLEVELS] [$ l2] [$p]+=$ i n t e r l e v e l d i s c o v e r y [

$ l1] [$ l 2] [$p] ;

328 }
329 }
330 }
331

332 # DETAILED AS−LEVEL RESULTS

333 # DETAILED AS−LEVEL LINK RESULTS

334

335 print " - G l o b a l router - l e v e l r e s u l t s \ n i c o v : " . $ i cov . " l c o v : " . $ l cov . " \ n " ;

336

337 i f ($ s h ow de t a i l e d r e s u l t s) {
338

339 print " - I N T E R F A C E - L E V E L : i n t e r f a c e d i s c o v e r y \ n " ;

340 foreach my $p (0 . .NPARAMETERS−1) { # f o r e a c h p a r a m e t e r

341 foreach my $c (0 . .NLABELS RNODES−1) { # f o r e a c h r o u t e r c l a s s

342 i f ($ i n t e r f a c e r e s u l t s [$p] [$c] != undef){
343 i f ($p==COVERAGE){
344 print " c o v e r a g e " ;

345 }
346 i f ($p==PROBED){
347 print " p r o b e d " ;

348 }
349 i f ($p==PROBES){
350 print " p r o b e s " ;

351 }
352 i f ($c==ROUTER INTERNAL){
353 print " (i) " ;

354 }
355 i f ($c==ROUTER BORDER){
356 print " (b) " ;

357 }
358 i f ($ d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c] != undef) { #

c h e c k non empty c l a s s

359 print " " ;

360 foreach my $ l (0 . . (scalar @{
$ d i s c o v e r e d i n t e r f a c e s p e r l e v e l [$c]}−1)){ #

f o r e a c h AS l e v e l

361 my $ r e s u l t = $ i n t e r f a c e r e s u l t s [$p] [$c] [$ l

] ;

362 i f ($ i n t e r f a c e r e s u l t s [COVERAGE] [$c] [$ l]

eq undef) {
363 print " / " ;

364 }
365 else {
366 print " $ r e s u l t " ;

109

APPENDICES E : Perl source code

367 }
368 }
369 }
370 print " \ n " ;

371 }
372 }
373 }
374 print " - I N T E R F A C E - L E V E L : inter - l e v e l l i n k d i s c o v e r y (i n t e r n a l , pp , pc) p e r f o r m e d

w i t h $ l p r o b e s l p r o b e s \ n " ;

375 foreach my $ l1 (0 . .$# i n t e r l e v e l d i s c o v e r y) { # f o r e a c h l e v e l 1

376 print " " ;

377 foreach my $ l2 (0. .$#{ $ i n t e r l e v e l d i s c o v e r y [$ l1]}) { # f o r e a c h l e v e l 2

378 foreach my $t (0. .$#{ $ i n t e r l e v e l d i s c o v e r y [$ l1] [$ l 2]}) { # f o r

e a c h l i n k t y p e (i n t e r n a l , PP , PC)

379 print $ i n t e r l e v e l d i s c o v e r y [$ l1] [$ l 2] [$t] ;

380 i f ($t !=$#{ $ i n t e r l e v e l d i s c o v e r y [$ l1] [$ l 2]}) {
381 print " , " ;

382 }
383 }
384 print " \ t " ;

385 }
386 print " \ n " ;

387 }
388 }
389 }

E.4 Doubletree algorithms module – doubletree.pm

1 #! / u s r / b i n / p e r l

2 # ===

3 # @(#) d o u b l e t r e e . pm

4 #

5 # @autho r G r e g o r y C u l p i n

6 # @date 2 7 / 0 5 / 2 0 0 6

7 # @ l a s t d a t e 2 8 / 0 5 / 2 0 0 6

8 #

9 # @ v e r s i o n 0 . 1

10

11 package doub le t r ee ;

12

13 require Exporter ;

14 @ISA= qw(Exporter) ;

15 @EXPORT= qw(t r a c e r ou t e

16 ex e cu t e t r a c e r ou t e

17 compute hops

18 doub le t r ee

19 execu t e doub l e t r e e

20) ;

21

22 use s t r i c t ;

23 use warnings ;

24 use l i b " . " ;

25 use CBGP 0 . 4 ;

26 use topology ;

27 use t o o l s ;

28 use Graph : : Directed ;

29 use Graph : : Undirected ;

30 use Data : : Dumper ;

31 use Math : : BigInt ;

32 use Bloom : : F i l t e r ;

33

34 sub compute hops

35 {
36 my ($cbgp re f , $d iscovery , $p , $hop eval , $max propagations , $ a s f i l e , $ r f i l e , $rtopo , $debug) = @

;

37

38 my $memcount = 1 ;

110

Appendix E.4 : Doubletree algorithms module – doubletree.pm

39

40 # f o r e a c h c l u s t e r

41 foreach my $c (keys %{$discovery−>{c l u s t e r }}){
42

43 # f o r e a c h s o u r c e

44 foreach my $s (keys %{$discovery−>{c l u s t e r }{$c}{ s r c }}){
45

46 # s e l e c t random d e s t i n a t i o n s

47 my @random dests ;

48 i f (exists $discovery−>{c l u s t e r }{$c}{ cdes t }) { # f rom common d e s t s e t

49 @random dests = random n from array ($hop eval , $d iscovery−>{c l u s t e r

}{$c}{ cdes t }) ;

50 }
51 else { # f rom i n d i v i d u a l d e s t s e t

52 i f (exists $discovery−>{c l u s t e r }{$c}{ s r c }{ $s}{d}){ # t e s t f o r

s o u r c e s w i t h empty d e s t s e t s

53 @random dests = random n from array ($hop eval , $d i scovery

−>{c l u s t e r }{$c}{ s r c }{ $s}{d}) ;

54 }
55 }
56

57 my $dcount = 1 ; # d e s t i n a t i o n c o u n t e r f o r r e s p o n d i n g d e s t i n a t i o n s

58 my @di s t r ibut i on ; # hop d i s t r i b u t i o n a r r a y c o n t a i n i n g hop s o f r e s p o n d i n g

d e s t i n a t i o n s

59

60 # upda t e hop d i s t r i b u t i o n a r r a y w i t h t h e p a t h l e n g t h s f r om c u r r e n t s o u r c e

t o e a c h d e s t i n a t i o n

61 foreach my $d (@random dests){
62 # don ’ t s e l f p r o b e

63 i f ($s !=$d) {
64 # p r o p a g a t e c u r r e n t d e s t i n a t i o n p r e f i x i n n e tw o r k

65 print " (" . $dcount . ") a d d i n g p r e f i x " . i n t2addre s s ($d)

. " /16 and p r o p a g a t i n g i n t o n e t w o r k \ n " i f $debug ;

66 $$cbgp re f−>send (" bgp r o u t e r " . i n t2addre s s ($d) . " add

n e t w o r k " . i n t2addre s s ($d) . " / 1 6 \ n ") ;

67 $$cbgp re f−>send (" sim run \ n ") ;

68 $$cbgp re f−>send (" bgp t o p o l o g y clear - r i b s \ n ") ; # f r e e up

memory by c l e a r i n g ou t r i b s

69 cbgp check ($cbgp re f) ;

70

71 # s end t r a c e r o u t e

72 $$cbgp re f−>send (" net n o d e " . i n t2addre s s ($s) . " record -

r o u t e " . i n t2addre s s ($d) . " \ n ") ;

73 # w a i t f o r a n sw e r and p r o c e s s

74 my $response= $$cbgp re f−>expect (1) ;

75

76 # an sw e r f o r m a t : s r c , d e s t , s t a t u s , hop0 , hop1 , hop2 , . . .

77 my @answer= sp l i t /\s+/, $response ;

78 # o n l y t a k e r e p l y i n g d e s t i n a t i o n s i n t o a c c o u n t

79 print " t r a c e r o u t e : " . $ response . " \ n " i f $debug ;

80 print " p a t h l e n g t h : " . (scalar @answer − 4) . " \ n " i f

$debug ;

81 i f ($answer [2] eq " S U C C E S S ") {
82 spl ice (@answer , 0 , 4) ; # c o n t a i n s hop1 , hop2 , . . .

83 $d i s t r i b u t i o n [scalar @answer]++; # upda t e

d i s t r i b u t i o n a r r a y

84 $dcount++;

85 }
86

87 # i f maximum memory c o u n t i s r e a c h e d f i n a l i z e and

r e i n i t i a l i z e c u r r e n t cbgp p r o c e s s

88 i f ($memcount==$max propagations) {
89 print " - - - m e m c o u n t reached , r e l o a d i n g

c b g p s i m u l a t o r - - -\ n " i f $debug ;

90

91 cbgp r e s e t ($cbgp re f) ;

92 cbgp setup ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) ;

93 $memcount=1;

94 }
95 else {
96 $memcount++;

111

APPENDICES E : Perl source code

97 }
98 }
99 }

100

101 # compute c u m u l a t i v e a r r a y o f h op s

102 my @cumulative ;

103 foreach my $ i (1 . . (scalar @di s t r ibut i on −1)){
104 foreach (1 . . $ i) {
105 i f (exists $d i s t r i b u t i o n [$]) {
106 $cumulative [$ i]+=$d i s t r i b u t i o n [$] ;

107 }
108 }
109 i f (exists $cumulative [$ i]) {
110 $cumulative [$ i]/=($dcount−1) ;

111 }
112 }
113

114 # c h o o s e hop s u c h a s t h e r e i s a p r o b a b i l i t y p% o f h i t t i n g a d e s t i n a t i o n on

t h e f i r s t h i t

115 my $hop=1;

116 for (my $ i =1; $i<scalar @cumulative ; $ i++){ # f o r e a c h hop i

117 i f (exists $cumulative [$ i] && $cumulative [$ i] <= $p){ # i f t h e

c u m u l a t i v e p r o p o r t i o n o f d e s t i n a t i o n s a t hop i i s s m a l l e r

t h an p

118 $hop = $ i ; # upda t e hop

119 print " " . $cumulative [$ i] . " <= " . ($p) . " , ok \ n " i f

$debug ;

120 }
121 else { # s t a r t i n g a t hop i wou ld h i t a l a r g e r p r o p o r t i o n o f

d e s t i n a t i o n s t h an p , k e e p p r e v i o u s hop

122 print " " . $cumulative [$ i] . " >= " . ($p) . " , b r e a k i n g and

c h o o s i n g hop " . ($hop) . " \ n " i f $debug ;

123 last ;

124 }
125 }
126 # s e t i n i t i a l hop f o r c u r r e n t s o u r c e

127 $discovery−>{c l u s t e r }{$c}{ s r c }{ $s}{hop}=$hop ;

128 }
129 }
130 # r e s e t cbgp s i m u l a t o r b e f o r e d i s c o v e r y (o r k e e p t r a c k o f nb o f p r o p a g a t i o n s)

131 cbgp r e s e t ($cbgp re f) ;

132 cbgp setup ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) ;

133 }
134

135 # −−−−−[t r a c e r o u t e]−−
136 # −−−
137

138 sub t r a c e r ou t e

139 {
140 my ($cbgp re f , $rgraph , $discovery , $ r f i l e , $ a s f i l e , $rtopo , $max propagations , $debug) = @ ;

141

142 my $memcount = 1 ; # memory c o u n t e r t o l i m i t number o f p r o p a g a t i o n s b e f o r e cbgp r e s e t

143

144 foreach my $c (keys %{$discovery−>{c l u s t e r }}){
145

146 # i f c u r r e n t c l u s t e r h a s a common d e s t i n a t i o n s e t : c y c l e on d e s t i n a t i o n s t h e n on

s o u r c e s

147 i f (exists $discovery−>{c l u s t e r }{$c}{ cdes t }) {
148

149 print " < C L U S T E R " . $c . " > p e r f o r m i n g c o m m o n d e s t i n a t i o n set d i s c o v e r y \ n "

i f $debug ;

150 my $dcount = 1 ; # d e s t i n a t i o n c o u n t e r f o r d i s p l a y

151

152 #−− FOR EACH DESTINATION

153 foreach my $d (@{ $discovery−>{c l u s t e r }{$c}{ cdes t }}){
154

155 my $succe s s = 0 ; # number o f s u c c e s s f u l t r a c e r o u t e s

156 my $ f a i l u r e = 0 ; # number o f f a i l e d t r a c e r o u t e s

157

158 # p r o p a g a t e c u r r e n t d e s t i n a t i o n p r e f i x i n n e tw o r k

112

Appendix E.4 : Doubletree algorithms module – doubletree.pm

159 print " (" . $dcount . ") a d d i n g p r e f i x " . i n t2addre s s ($d) . " /16

and p r o p a g a t i n g i n t o n e t w o r k \ n " i f $debug ;

160 $$cbgp re f−>send (" bgp r o u t e r " . i n t2addre s s ($d) . " add n e t w o r k " .

i n t2addre s s ($d) . " / 1 6 \ n ") ;

161 $$cbgp re f−>send (" sim run \ n ") ;

162 $$cbgp re f−>send (" bgp t o p o l o g y clear - r i b s \ n ") ; # f r e e up memory by

c l e a r i n g ou t r i b s

163 cbgp check ($cbgp re f) ;

164

165 #−− FROM EACH SOURCE

166 foreach my $s (keys %{$discovery−>{c l u s t e r }{$c}{ s r c }}){
167 # p e r f o r m s i n g l e t r a c e r o u t e c a l l (1 s o u r c e t o 1

d e s t i n a t i o n) , r o u t e r g r a ph upd a t e d w i t h p r o b e d

i n t e r f a c e s

168 my ($ cu r r succ e s s , $ c u r r f a i l u r e) = exe cu t e t r a c e r ou t e (

$cbgp re f , $rgraph , $s , $d , $debug) ;

169 $ succe s s+=$cu r r s u c c e s s ;

170 $ f a i l u r e+=$ c u r r f a i l u r e ;

171 }
172

173 # d i s p l a y s u c c e s s s t a t i s t i c s f o r t r a c e r o u t e s t o w a r d s c u r r e n t

d e s t i n a t i o n

174 print " (" . $dcount++.") p e r f o r m e d $ s u c c e s s out of " . ($ succe s s

+$ f a i l u r e) . " p r o b i n g s c h e m e (s) s u c c e s s f u l l y t o w a r d s " .

i n t2addre s s ($d) . " \ n " i f $debug ;

175 # i f maximum memory c o u n t i s r e a c h e d f i n a l i z e and r e i n i t i a l i z e

c u r r e n t cbgp p r o c e s s

176 i f ($memcount==$max propagations) {
177 print " - - - m e m c o u n t reached , r e l o a d i n g c b g p

s i m u l a t o r - - -\ n " i f $debug ;

178 cbgp r e s e t ($cbgp re f) ;

179 cbgp setup ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) ;

180

181 $memcount=1;

182 }
183 else {
184 $memcount++;

185 }
186 }
187 }
188

189 # d e s t i n a t i o n s e t s a r e i n d i v i d u a l : c y c l e on s o u r c e s , t h e n on d e s t i n a t i o n s

190 else {
191

192 print " < C L U S T E R " . $c . " > p e r f o r m i n g i n d i v i d u a l d e s t i n a t i o n set d i s c o v e r y

\ n " i f $debug ;

193 my $scount = 1 ; # s o u r c e c o u n t e r f o r d i s p l a y

194

195 #−− FROM EACH SOURCE

196 foreach my $s (keys %{$discovery−>{c l u s t e r }{$c}{ s r c }}){
197

198 my $dcount = 1 ; # d e s t i n a t i o n c o u n t f o r p r i n t

199 my $succe s s = 0 ; # number o f s u c c e s s f u l t r a c e r o u t e s

200 my $ f a i l u r e = 0 ; # number o f f a i l e d t r a c e r o u t e s

201

202 #−− EXECUTE TRACEROUTE TO EACH DESTINATION

203 foreach my $d (@{ $discovery−>{c l u s t e r }{$c}{ s r c }{ $s}{d}}){
204

205 # p r o p a g a t e c u r r e n t d e s t i n a t i o n p r e f i x i n n e tw o r k

206 print " (" . $dcount++.") a d d i n g p r e f i x " . i n t2addre s s (

$d) . " /16 and p r o p a g a t i n g i n t o n e t w o r k \ n " i f $debug ;

207 $$cbgp re f−>send (" bgp r o u t e r " . i n t2addre s s ($d) . " add

n e t w o r k " . i n t2addre s s ($d) . " / 1 6 \ n ") ;

208 $$cbgp re f−>send (" sim run \ n ") ;

209 $$cbgp re f−>send (" bgp t o p o l o g y clear - r i b s \ n ") ; # f r e e up

memory by c l e a r i n g ou t r i b s

210 cbgp check ($cbgp re f) ;

211

212 # p e r f o r m s i n g l e t r a c e r o u t e c a l l (1 s o u r c e t o 1

d e s t i n a t i o n) , r o u t e r g r a ph upd a t e d w i t h p r o b e d

i n t e r f a c e s

113

APPENDICES E : Perl source code

213 my ($ cu r r suc c e s s , $ c u r r f a i l u r e) = exe cu t e t r a c e r ou t e (

$cbgp re f , $rgraph , $s , $d , $debug) ;

214 $ succe s s+=$cu r r s u c c e s s ;

215 $ f a i l u r e+=$ c u r r f a i l u r e ;

216

217 # i f maximum memory c o u n t i s r e a c h e d f i n a l i z e and

r e i n i t i a l i z e c u r r e n t cbgp p r o c e s s

218 i f ($memcount==$max propagations) {
219 print " - - - m e m c o u n t reached , r e l o a d i n g

c b g p s i m u l a t o r - - -\ n " i f $debug ;

220 cbgp r e s e t ($cbgp re f) ;

221 cbgp setup ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) ;

222 $memcount=1;

223 }
224 else {
225 $memcount++;

226 }
227 }
228

229 # d i s p l a y s u c c e s s s t a t i s t i c s f o r c u r r e n t s o u r c e

230 print " (" . $scount++.") P e r f o r m e d $ s u c c e s s out of " . ($ succe s s

+$ f a i l u r e) . " p r o b i n g s c h e m e (s) s u c c e s s f u l l y f r o m " .

i n t2addre s s ($s) . " \ n " i f $debug ;

231 }
232 }
233 }
234 }
235

236 sub ex e cu t e t r a c e r ou t e # f rom a s p e c i f i c s o u r c e t o a s p e c i f i c d e s t i n a t i o n

237 {
238 my ($cbgp re f , $rgraph , $s , $d , $debug) = @ ;

239

240 my $succe s s = 0 ;

241 my $ f a i l u r e = 0 ;

242

243 i f ($d ne $s){ # don ’ t s e l f p r o b e

244

245 # s end t r a c e r o u t e command t o s i m u l a t o r

246 $$cbgp re f−>send (" net n o d e " . i n t2addre s s ($s) . " record - r o u t e " . i n t2addre s s ($d) . " \ n "

) ;

247 # w a i t f o r a n sw e r and p r o c e s s

248 my $response= $$cbgp re f−>expect (1) ;

249 # an sw e r f o r m a t : s r c , d e s t , s t a t u s , hop0 , hop1 , hop2 , . . .

250 my @answer= sp l i t /\s+/, $response ;

251

252 print " * t r a c e r o u t e : " . $ response . " \ n " i f $debug ;

253

254 # c h e c k t r a c e r o u t e s t a t u s

255 i f ($answer [2] eq " S U C C E S S ") {
256 # i f s u c c e s s f u l , add t o a r r a y e a c h i p a p p e a r i n g a f t e r i n i t i a l hop (f r om

i n d e x h+3 onwa rd s)

257 spl ice (@answer , 0 , 3) ; # a r r a y c o n t a i n s hop0 , hop1 , . . .

258

259 for (my $ i =1; $ i <= $#answer ; $ i++){
260 # ea c h i n t e r f a c e f r om t r a c e r o u t e i s added t o g r a ph by i n c r e m e n t i n g

v e r t e x c o u n t

261 # c u r r e n t s o u r c e s h o u l d n o t be c o n s i d e r e d a s a p r o b e d i n t e r f a c e

262 # a s i t wou ld f a l s e t h e number o f p r o b e s t h a t may come f r om o t h e r

s o u r c e s

263 $rgraph−>add vertex (addre s s2 in t ($answer [$ i])) ; # p r o b e i n t e r f a c e

a t hop i

264

265 # ea c h l i n k f r om t r a c e r o u t e , f r om (hop0 , hop1) t o (hopN−1 , hopN) ,

h a s i t s e d g e c o u n t i n c r e m e n t e d

266 $rgraph−>add edge (addre s s2 in t ($answer [$i −1]) , addre s s2 in t ($answer [

$ i])) ; # p r o b e i n t e r f a c e a t hop i

267

268 }
269 $succe s s++;

270 }
271 # i f u n r e a c h a b l e o r e l s e , add p a r t i a l t r a c e r o u t e s ?

114

Appendix E.4 : Doubletree algorithms module – doubletree.pm

272 else {
273 $ f a i l u r e++;

274 }
275 }
276 else {
277 # i g n o r e s e l f p r ob e , don ’ t a c c o u n t a s f a i l u r e

278 }
279 return ($success , $ f a i l u r e) ;

280 }
281

282 # −−−−−[d o u b l e t r e e]−−
283 # −−−
284

285 sub doub le t r ee

286 {
287 my ($cbgp re f , $rgraph , $discovery , $ r f i l e , $ a s f i l e , $rtopo , $max propagations , $bloom capacity ,

$bloom error , $nobloom , $debug) = @ ;

288

289 my $memcount = 1 ; # memory c o u n t e r t o l i m i t number o f p r o p a g a t i o n s b e f o r e cbgp r e s e t

290

291 foreach my $c (keys %{$discovery−>{c l u s t e r }}){
292

293 my $bf ;

294

295 # i n i t i a l i z e b loom f i l t e r i f u s e d

296 i f (! $nobloom){
297 $discovery−>{c l u s t e r }{$c}{bloom}=Bloom : : F i l t e r−>new(capac i ty=>

$bloom capacity , e r r o r r a t e=>$bloom error) ;

298 print " B L O O M f i l t e r l e n g t h : " . $d i scovery−>{c l u s t e r }{$c}{bloom}−>length . " \

n " i f $debug ;

299 }
300

301 # i f c u r r e n t c l u s t e r h a s a common d e s t i n a t i o n s e t : c y c l e on d e s t i n a t i o n s t h e n on

s o u r c e s

302 i f (exists $discovery−>{c l u s t e r }{$c}{ cdes t }) {
303

304 print " < C L U S T E R " . $c . " > p e r f o r m i n g c o m m o n d e s t i n a t i o n set d i s c o v e r y \ n "

i f $debug ;

305 my $dcount = 1 ; # d e s t i n a t i o n c o u n t e r f o r d i s p l a y

306

307 #−− FOR EACH DESTINATION

308 foreach my $d (@{ $discovery−>{c l u s t e r }{$c}{ cdes t }}){
309

310 my $succe s s = 0 ; # number o f s u c c e s s f u l d o u b l e t r e e c a l l s

311 my $ f a i l u r e = 0 ; # number o f f a i l e d d o u b l e t r e e c a l l s (u n s u c c e s s f u l

t r a c e r o u t e o r hop beyond d e s t i n a t i o n)

312

313 # p r o p a g a t e c u r r e n t d e s t i n a t i o n p r e f i x i n n e tw o r k

314 print " (" . $dcount . ") a d d i n g p r e f i x " . i n t2addre s s ($d) . " /16

and p r o p a g a t i n g i n t o n e t w o r k \ n " i f $debug ;

315 $$cbgp re f−>send (" bgp r o u t e r " . i n t2addre s s ($d) . " add n e t w o r k " .

i n t2addre s s ($d) . " / 1 6 \ n ") ;

316 $$cbgp re f−>send (" sim run \ n ") ;

317 $$cbgp re f−>send (" bgp t o p o l o g y clear - r i b s \ n ") ; # f r e e up memory by

c l e a r i n g ou t r i b s

318 cbgp check ($cbgp re f) ;

319

320 #−− FROM EACH SOURCE

321 foreach my $s (keys %{$discovery−>{c l u s t e r }{$c}{ s r c }}){
322 # p e r f o r m s i n g l e d o u b l e t r e e c a l l (1 s o u r c e t o 1

d e s t i n a t i o n) , r o u t e r g r a ph upd a t e d w i t h p r o b e d

i n t e r f a c e s

323 my ($ cu r r succ e s s , $ c u r r f a i l u r e) = execu t e doub l e t r e e (

$cbgp re f , $d i scovery , $rgraph , $c , $s , $d , $d iscovery−>{
c l u s t e r }{$c}{ s r c }{ $s}{hop} , $nobloom , $debug) ;

324 $ succe s s+=$cu r r s u c c e s s ;

325 $ f a i l u r e+=$ c u r r f a i l u r e ;

326 }
327

328 # d i s p l a y s u c c e s s s t a t i s t i c s f o r t r a c e r o u t e s t o w a r d s c u r r e n t

d e s t i n a t i o n

115

APPENDICES E : Perl source code

329 print " (" . $dcount++.") p e r f o r m e d $ s u c c e s s out of " . ($ succe s s

+$ f a i l u r e) . " p r o b i n g s c h e m e (s) s u c c e s s f u l l y t o w a r d s " .

i n t2addre s s ($d) . " \ n " i f $debug ;

330 # i f maximum memory c o u n t i s r e a c h e d f i n a l i z e and r e i n i t i a l i z e

c u r r e n t cbgp p r o c e s s

331 i f ($memcount==$max propagations) {
332 print " - - - m e m c o u n t reached , r e l o a d i n g c b g p

s i m u l a t o r - - -\ n " i f $debug ;

333 cbgp re s e t ($cbgp re f) ;

334 cbgp setup ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) ;

335

336 $memcount=1;

337 }
338 else {
339 $memcount++;

340 }
341 }
342 }
343

344 # d e s t i n a t i o n s e t s a r e i n d i v i d u a l : c y c l e on s o u r c e s , t h e n on d e s t i n a t i o n s

345 else {
346

347 print " < C L U S T E R " . $c . " > p e r f o r m i n g i n d i v i d u a l d e s t i n a t i o n set d i s c o v e r y

\ n " i f $debug ;

348 my $scount = 1 ; # s o u r c e c o u n t e r f o r d i s p l a y

349

350 #−− FROM EACH SOURCE

351 foreach my $s (keys %{$discovery−>{c l u s t e r }{$c}{ s r c }}){
352

353 my $dcount = 1 ; # d e s t i n a t i o n c o u n t f o r p r i n t

354 my $succe s s = 0 ; # number o f s u c c e s s f u l t r a c e r o u t e s

355 my $ f a i l u r e = 0 ; # number o f f a i l e d t r a c e r o u t e s

356

357 #−− EXECUTE TRACEROUTE TO EACH DESTINATION

358 foreach my $d (@{ $discovery−>{c l u s t e r }{$c}{ s r c }{ $s}{d}}){
359

360 # p r o p a g a t e c u r r e n t d e s t i n a t i o n p r e f i x i n n e tw o r k

361 print " (" . $dcount++.") a d d i n g p r e f i x " . i n t2addre s s (

$d) . " /16 and p r o p a g a t i n g i n t o n e t w o r k \ n " i f $debug ;

362 $$cbgp re f−>send (" bgp r o u t e r " . i n t2addre s s ($d) . " add

n e t w o r k " . i n t2addre s s ($d) . " / 1 6 \ n ") ;

363 $$cbgp re f−>send (" sim run \ n ") ;

364 $$cbgp re f−>send (" bgp t o p o l o g y clear - r i b s \ n ") ; # f r e e up

memory by c l e a r i n g ou t r i b s

365 cbgp check ($cbgp re f) ;

366

367 # p e r f o r m s i n g l e t r a c e r o u t e c a l l (1 s o u r c e t o 1

d e s t i n a t i o n) , r o u t e r g r a ph upd a t e d w i t h p r o b e d

i n t e r f a c e s

368 my ($ cu r r suc c e s s , $ c u r r f a i l u r e) = execu t e doub l e t r e e (

$cbgp re f , $d i scovery , $rgraph , $c , $s , $d , $d iscovery−>{
c l u s t e r }{$c}{ s r c }{ $s}{hop} , $nobloom , $debug) ;

369 $ succe s s+=$cu r r s u c c e s s ;

370 $ f a i l u r e+=$ c u r r f a i l u r e ;

371

372 # i f maximum memory c o u n t i s r e a c h e d f i n a l i z e and

r e i n i t i a l i z e c u r r e n t cbgp p r o c e s s

373 i f ($memcount==$max propagations) {
374 print " - - - m e m c o u n t reached , r e l o a d i n g

c b g p s i m u l a t o r - - -\ n " i f $debug ;

375 cbgp r e s e t ($cbgp re f) ;

376 cbgp setup ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) ;

377 $memcount=1;

378 }
379 else {
380 $memcount++;

381 }
382 }
383

384 # d i s p l a y s u c c e s s s t a t i s t i c s f o r c u r r e n t s o u r c e

116

Appendix E.4 : Doubletree algorithms module – doubletree.pm

385 print " (" . $scount++.") P e r f o r m e d $ s u c c e s s out of " . ($ succe s s

+$ f a i l u r e) . " p r o b i n g s c h e m e (s) s u c c e s s f u l l y f r o m " .

i n t2addre s s ($s) . " \ n " i f $debug ;

386 }
387 }
388 }
389 }
390

391 sub execu t e doub l e t r e e # f rom a s p e c i f i c s o u r c e t o a s p e c i f i c d e s t i n a t i o n

392 {
393 my ($cbgp re f , $d i scovery , $rgraph , $c , $s , $d , $hop , $nobloom , $debug) = @ ;

394

395 my $succe s s = 0 ;

396 my $ f a i l u r e = 0 ;

397

398 i f ($d ne $s){ # don ’ t s e l f p r o b e

399

400 # s end t r a c e r o u t e command t o s i m u l a t o r

401 $$cbgp re f−>send (" net n o d e " . i n t2addre s s ($s) . " record - r o u t e " . i n t2addre s s ($d) . " \ n "

) ;

402 # w a i t f o r a n sw e r and p r o c e s s

403 my $response = $$cbgp re f−>expect (1) ;

404 print " * t r a c e r o u t e : " . $ response . " \ n " i f $debug ;

405 # an sw e r f o r m a t : s r c , d e s t , s t a t u s , hop0 , hop1 , hop2 , . . .

406 my @answer = sp l i t /\s+/, $response ;

407

408 # c h e c k i f hop h (a t i n d e x h +3) i s n o t b eyond d e s t i n a t i o n (a t l a s t i n d e x)

409 i f (3+$hop <= $#answer){
410 i f ($answer [2] eq " S U C C E S S ") {
411 # remove f i r s t t h r e e f i e l d s wh i c h a r e u s e l e s s

412 spl ice (@answer , 0 , 3) ;

413

414 # f o r w a r d p r o b i n g s t a r t i n g f r om hop t o d e s t i n a t i o n

415 foreach ($hop ..$# answer) {
416

417 # p r o b e i n t e r f a c e and l i n k a t c u r r e n t hop

418 $rgraph−>add vertex (addre s s2 in t ($answer [$])) ; #

d i s c o v e r e d i n t e r f a c e

419 print " F O R W A R D P R O B E : p r o b e d " . $answer [$] . " at h = " . $.

" \ n " i f $debug ;

420 $rgraph−>add edge (addre s s2 in t ($answer [$ −1]) , addre s s2 in t (

$answer [$])) ; # d i s c o v e r e d l i n k (p r e c e d i n g i n t e r f a c e

)

421 print " p r o b e d (" . $answer [$ −1] . " , " .

$answer [$] . ") b e t w e e n h = " . ($ −1) . " and h = " . $. " \ n "

i f $debug ;

422

423 # i f c u r r e n t i n t e r f a c e != d e s t i n a t i o n and no t y e t

c o n t a i n e d i n g l o b a l s e t , add i t

424 i f (addre s s2 in t ($answer [$]) !=$d) {
425

426 i f ($nobloom){ # don ’ t u s e b loom f i l t e r f o r g l o b a l

s e t

427 i f (! exists $discovery−>{c l u s t e r }{$c}{
g l o b a l s e t }{ l i n k 2 b i g i n t ($answer [$] ,

i n t2addre s s ($d) ,0) }) {
428 $discovery−>{c l u s t e r }{$c}{

g l o b a l s e t }{ l i n k 2b i g i n t (

$answer [$] , i n t2addre s s ($d)

,0)}++; # i p c o u p l e t r e a t e d

a s a s y m m e t r i c a l l i n k

429 print " a d d i n g ("

. $answer [$] . " , " . i n t2addre s s (

$d) . ") to g l o b a l set \ n " i f

$debug ;

430 }
431 else { # i s a l r e a d y p a r t o f g l o b a l s e t

432 print " g l o b a l

set m e m b e r hit , not a d d e d .\ n "

i f $debug ;

433 last ;

117

APPENDICES E : Perl source code

434 }
435 }
436 else { # u s e b loom f i l t e r f o r g l o b a l s e t

437 i f (! $d i scovery−>{c l u s t e r }{$c}{bloom}−>

check (l i n k 2b i g i n t ($answer [$] ,

i n t2addre s s ($d) ,0))) {
438 $discovery−>{c l u s t e r }{$c}{bloom}−>

add (l i n k 2b i g i n t ($answer [$] ,

i n t2addre s s ($d) ,0)) ; # i p

c o u p l e t r e a t e d a s

a s y m m e t r i c a l l i n k

439 print " a d d i n g ("

. $answer [$] . " , " . i n t2addre s s (

$d) . ") to g l o b a l set \ n " i f

$debug ;

440 }
441 else { # i s a l r e a d y p a r t o f g l o b a l s e t

442 print " g l o b a l

set m e m b e r hit , not a d d e d .\ n "

i f $debug ;

443 last ;

444 }
445

446 }
447 }
448 else { # i s d e s t i n a t i o n h i t

449 print " d e s t i n a t i o n hit , not

a d d e d .\ n " i f $debug ;

450 last ;

451 }
452

453 }
454

455 # t r a c e b a c kwa r d s f r om hop t o s o u r c e +1

456 foreach (reverse (1 . . $hop−1)) {
457

458 # p r o b e i n t e r f a c e and l i n k a t c u r r e n t hop

459 $rgraph−>add vertex (addre s s2 in t ($answer [$])) ; #

d i s c o v e r e d i n t e r f a c e

460 print " B A C K W A R D P R O B E : p r o b e d " . $answer [$] . " at h = " . $.

" \ n " i f $debug ;

461 $rgraph−>add edge (addre s s2 in t ($answer [$ −1]) , addre s s2 in t (

$answer [$])) ;

462 print " p r o b e d (" . $answer [$ −1] . " , " .

$answer [$] . ") b e t w e e n h = " . ($ −1) . " and h = " . $. " \ n "

i f $debug ;

463 # i f c u r r e n t i n t e r f a c e n o t y e t c o n t a i n e d i n l o c a l s e t , add

i t t o b o t h l o c a l and g l o b a l s e t s

464 i f (! exists $discovery−>{c l u s t e r }{$c}{ s r c }{ $s}{ l o c a l s e t }{
addre s s2 in t ($answer [$]) }) {

465 $discovery−>{c l u s t e r }{$c}{ s r c }{ $s}{ l o c a l s e t }{
addre s s2 in t ($answer [$]) }++;

466 print " a d d i n g (" . $answer [$] . ")

to l o c a l set \ n " i f $debug ;

467

468 i f ($nobloom){ # don ’ t u s e b loom f i l t e r f o r g l o b a l

s e t

469 $discovery−>{c l u s t e r }{$c}{ g l o b a l s e t }{
l i n k 2 b i g i n t ($answer [$] , i n t2addre s s (

$d) ,0)}++;

470 print " a d d i n g (" . $answer

[$] . " , " . i n t2addre s s ($d) . ") to g l o b a l

set \ n " i f $debug ;

471 }
472 else { # u s e b loom f i l t e r f o r g l o b a l s e t

473 $discovery−>{c l u s t e r }{$c}{bloom}−>add (

l i n k 2b i g i n t ($answer [$] , i n t2addre s s (

$d) ,0)) ; # i p c o u p l e t r e a t e d a s

a s y m m e t r i c a l l i n k

474 print " a d d i n g (" . $answer

[$] . " , " . i n t2addre s s ($d) . ") to g l o b a l

118

Appendix E.5 : Topology model module – topology.pm

set \ n " i f $debug ;

475 }
476 }
477 else { # e l s e i s a l r e a d y p a r t o f l o c a l s e t

478 print " l o c a l set m e m b e r hit , not

a d d e d .\ n " i f $debug ;

479 last ;

480 }
481 i f (addre s s2 in t ($answer [$ −1])==$s) { # i s i n t e r f a c e a t

hop 1

482 print " s o u r c e next - hop hit .\ n "

i f $debug ;

483 }
484 }
485

486 $succe s s++;

487 }
488 # i f t r a c e r o u t e u n s u c c e s s f u l f o r any r e a s o n (TODO add p a r t i a l t r a c e r o u t e s

?)

489 else {
490 print " F a i l u r e : t r a c e r o u t e u n s u c c e s s f u l \ n " i f $debug ;

491 $ f a i l u r e++;

492 }
493 }
494 # hop h i s b eyond d e s t i n a t i o n , a d a p t v a l u e by h a l v i n g i t

495 e l s i f ($hop !=1) {
496 print " F a i l u r e : hop b e y o n d d e s t i n a t i o n . re - e x e c u t i n g w i t h hop = " . int ((

$hop /2) +0.5) . " \ n " i f $debug ;

497 my ($ i n c suc c e s s , $ i n c f a i l u r e) = execu t e doub l e t r e e ($cbgp re f , $d i scovery ,

$rgraph , $c , $s , $d , int (($hop /2) +0.5) , $nobloom , $debug) ;

498

499 $succe s s+=$ i n c s u c c e s s ;

500 $ f a i l u r e+=$ i n c f a i l u r e +1;

501 }
502 # god knows what hop p r o b l em

503 else {
504 print " F a i l u r e : u n k n o w n \ n " i f $debug ;

505 $ f a i l u r e++;

506 }
507 }
508 else {
509 # i g n o r e s e l f p r ob e , don ’ t a c c o u n t a s f a i l u r e

510 }
511 return ($success , $ f a i l u r e) ;

512 }

E.5 Topology model module – topology.pm

1 #! / u s r / b i n / p e r l

2 # ===

3 # Topo l o g y modu l e p r o v i d i n g i n i t i a l i z a t i o n and s o r t i n g s u b r o u t i n e s

4 # @(#) t o p o l o g y . pm

5 # @autho r G r e g o r y C u l p i n

6 # @date 2 7 / 0 5 / 2 0 0 6

7 # @ l a s t d a t e 2 8 / 0 5 / 2 0 0 6

8

9 package topology ;

10

11 require Exporter ;

12 @ISA= qw(Exporter) ;

13 @EXPORT= qw(i n i t a s g r aph

14 i n i t r g r a ph

15 s o r t a s e s b y l e v e l

16 s o r t r o u t e r s b y l e v e l a nd t yp e

17) ;

18 use s t r i c t ;

19 use t o o l s ;

119

APPENDICES E : Perl source code

20 use l i b " . " ;

21 use Math : : BigInt ;

22 use Data : : Dumper ;

23 use Graph : : Directed ;

24 use Graph : : Undirected ;

25 use constant {
26 # r o u t e r− l e v e l node l a b e l s

27 NLABELS RNODES => 2 ,

28 ROUTER INTERNAL => 0 ,

29 ROUTER BORDER => 1 ,

30 # r o u t e r− l e v e l e d g e l a b e l s

31 NLABELS RLINKS => 3 ,

32 RLINK INTERNAL => 0 ,

33 RLINK PP => 1 ,

34 RLINK PC => 2 ,

35 # AS− l e v e l node l a b e l s

36 NLEVELS => 5 ,

37 AS CORE => 0 ,

38 AS TRANSIT => 1 ,

39 AS OUTER => 2 ,

40 AS ISP => 3 ,

41 AS CUSTOMER => 4 ,

42 # r o u t e r− l e v e l e d g e l a b e l s

43 NLABELS ASLINKS => 2 ,

44 ASLINK PP => 0 ,

45 ASLINK PC => 1 ,

46 # r e s u l t p a r a m e t e r s

47 NPARAMETERS => 3 ,

48 COVERAGE => 0 ,

49 PROBED => 1 ,

50 PROBES => 2 ,

51 } ;

52

53 # −−−−−[i n i t a s g r a p h]−−
54 # −−−
55 sub i n i t a s g r aph {
56

57 my ($astopo , $asgraph , $ a s l e v e l s , $show info) = @ ;

58

59 my @leve l counte r ; # f o r d i s p l a y

60

61 # i n i t i a l i z e e d g e s

62 foreach (@$astopo) {
63 my @line= sp l i t /\s+/;

64 # add e a c h AS a s v e r t e x and r e l a t i o n s h i p a s e d g e

65 i f (scalar (@l ine) == 3) { # i n p u t f o r m a t [a s 1 a s 2 r e l a t i o n s h i p] (0 : PP ,−1 :CP , 1 : PC)

66 i f ($ l i n e [2]==0) { # pe e r−to−p e e r r e l a t i o n s h i p i s r e p r e s e n t e d by two

d i r e c t i o n a l e d g e s

67 $asgraph−>add edge ($ l i n e [1] , $ l i n e [0]) ;

68 $asgraph−>add edge ($ l i n e [0] , $ l i n e [1]) ;

69 }
70 e l s i f ($ l i n e [2]==−1) { # cu s t ome r−to−p r o v i d e r r e l a t i o n s h i p r e p r e s e n t e d by

a d i r e c t i o n a l e d g e

71 $asgraph−>add edge ($ l i n e [1] , $ l i n e [0]) ;

72 }
73 e l s i f ($ l i n e [2]==1) { # p r o v i d e r−to−c u s t o m e r r e l a t i o n s h i p r e p r e s e n t e d by a

d i r e c t i o n a l e d g e

74 $asgraph−>add edge ($ l i n e [0] , $ l i n e [1]) ;

75 }
76 else {
77 die " r e l a t i o n s h i p f i l e has s y n t a x e r r o r s (w r o n g v a l u e for 3 rd

a r g u m e n t) \ n " ;

78 }
79 }
80 else {
81 die " r e l a t i o n s h i p f i l e has s y n t a x e r r o r s (w r o n g n u m b e r of a r g u m e n t s per

l i n e) \ n " ;

82 }
83 }
84

85 # s e t w e i g h t o f e a c h AS a c c o r d i n g t o i t s c l a s s i f i c a t i o n

120

Appendix E.5 : Topology model module – topology.pm

86 foreach (@$as l eve l s) {
87 my @line= sp l i t /\s+/;

88 i f (scalar (@l ine) == 2) { # i n p u t f o r m a t [a s l e v e l]

89 $asgraph−>s e t v e r t e x we i gh t ($ l i n e [0] , $ l i n e [1]) ;

90 $ l e v e l c oun t e r [$ l i n e [1]]++;

91 }
92 }
93

94 # d i s p l a y i n f o r m a t i o n (and don ’ t c ompute i f no d i s p l a y)

95 i f ($show info){
96

97 print " - AS - L E V E L : per - l e v e l d i s t r i b u t i o n \ n " ;

98 foreach my $ l (0 . .NLEVELS−1){ # f o r e a c h l e v e l

99 i f ($ l e v e l c oun t e r [$ l] != undef) {
100 print $ l e v e l c oun t e r [$ l] . " \ t " ;

101 }
102 else {
103 print " 0\ t " ;

104 }
105 }
106 print " \ n " ;

107

108 #−− i n t e r − l e v e l AS c o n n e c t i v i t y

109 my @ in t e r l e v e l a s c o n n e c t i v i t y ;

110

111 # i n i t a r r a y t o a l l z e r o e s

112 foreach my $ l1 (0 . .NLEVELS−1){
113 foreach my $ l2 (0 . .NLEVELS−1){
114 foreach my $p (0 . . 1) {
115 $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2] [$p]=0;

116 }
117 }
118 }
119 # compute v a l u e s

120 foreach ($asgraph−>unique edges){
121 my $as1 = @{ $ } [0] ;

122 my $as2 = @{ $ } [1] ;

123

124 # g e t l e v e l t o wh i c h b e l o n g s e a c h AS

125 my $ l1 = $asgraph−>ge t v e r t ex we i gh t ($as1) ;

126 my $ l2 = $asgraph−>ge t v e r t ex we i gh t ($as2) ;

127

128 i f ($asgraph−>has edge ($as1 , $as2)){
129 i f ($asgraph−>has edge ($as2 , $as1)){ # edg e i n AS g r a ph i s

b i d i r e c t i o n a l a s1<−>a s 2

130 # add p e e r l i n k t w i c e 1/2 (o n c e f o r e a c h r o u t e r ’ s l e v e l)

131 $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2] [ASLINK PP]+=0.5;

132 $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l2] [$ l 1] [ASLINK PP]+=0.5;

133 }
134 else { # edg e d i r e c t i o n i n AS g r a ph i s a s1−>a s 2

135 $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2] [ASLINK PC]++;

136 }
137 }
138 e l s i f ($asgraph−>has edge ($as2 , $as1)){ # edg e d i r e c t i o n i n AS g r a ph i s a s1

<−a s 2

139 $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l2] [$ l 1] [ASLINK PC]++;

140 }
141 }
142 # compute t o t a l s

143 foreach my $ l1 (0 . .NLEVELS−1){ # p e r l i n e t o t a l s , s t o r e d i n e x t r a co lumn

144 foreach my $ l2 (0 . .NLEVELS−1){
145 foreach my $p (0 . . 1) {
146 $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [NLEVELS] [$p]+=

$ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2] [$p] ;

147 }
148 }
149 }
150 foreach my $ l2 (0 . .NLEVELS){ # p e r co lumn t o t a l s (i n c l u d i n g l i n e sum) , s t o r e d i n

e x t r a l i n e

151 foreach my $ l1 (0 . .NLEVELS−1){
152 foreach my $p (0 . . 1) {

121

APPENDICES E : Perl source code

153 $ i n t e r l e v e l a s c o n n e c t i v i t y [NLEVELS] [$ l2] [$p]+=

$ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2] [$p] ;

154 }
155 }
156 }
157 # d i s p l a y (rem : p e e r i n g r e l a t i o n s h i p s a r e d o u b l e e d g e s s o a r e c o u n t e d t w i c e)

158 print " - AS - L E V E L : inter - l e v e l c o n n e c t i v i t y (pp , pc) \ n " ;

159 foreach my $ l1 (0 . .$# i n t e r l e v e l a s c o n n e c t i v i t y) { # f o r e a c h l e v e l 1

160 print " " ;

161 foreach my $ l2 (0. .$#{ $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1]}) { # f o r e a c h

l e v e l 2

162 foreach my $t (0. .$#{ $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2]}) { #

f o r e a c h l i n k t y p e (PP , PC)

163 print $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2] [$t] ;

164 i f ($t !=$#{ $ i n t e r l e v e l a s c o n n e c t i v i t y [$ l1] [$ l 2]}) {
165 print " , " ;

166 }
167 }
168 print " \ t " ;

169 }
170 print " \ n " ;

171 }
172 }
173 }
174

175 # −−−−−[i n i t r g r a p h]−−
176 # −−−
177 sub i n i t r g r a ph {
178

179 my ($ r f i l e , $rtopo , $asgraph , $rgraph , $show info) = @ ;

180

181 # e x t r a c t r o u t e r s and l i n k s f r om t o p o l o g y

182 my $ i n t e r f a c e s = g e t i n t e r f a c e s ($rtopo) ;

183 my $ l i n k s = g e t l i n k s ($rtopo) ;

184

185 # i n i t i a l i z e u n d i r e c t e d g r a ph o f r o u t e r s

186

187 i f ($ r f i l e ne ’ ’) { # e x t r a c t f r om r o u t e r t o p o l o g y i f a v a i l a b l e

188 # add e a c h u n i q u e i p a d d r e s s t o g r a ph

189 foreach (@$ in t e r f a c e s){
190 $rgraph−>add vertex ($) ;

191 }
192

193 # add e a c h u n i q u e l i n k t o g r a ph

194 foreach (@$l inks){
195 my ($ip1 , $ ip2) = b i g i n t 2 i n t s ($) ;

196 $rgraph−>add edge ($ip1 , $ ip2) ;

197 }
198 }
199 else { # e x t r a c t i n t e r f a c e s and e d g e s f r om AS g r a ph

200 # rem : cbgp a s s i g n s a u n i q u e r o u t e r o f i p a d d r e s s (AS num ∗ 6 5 5 3 6) b a s e d on an AS

t o p o l o g y i m p o r t

201 my $undi rected = $asgraph−>undi rected copy graph ;

202 foreach ($asgraph−>un i qu e v e r t i c e s){
203 $rgraph−>add vertex (($ <<16)) ;

204

205 }
206 foreach ($undirected−>unique edges){
207 $rgraph−>add edge (@{ $ }[0]< <16 ,@{ $ }[1]< <16) ;

208 }
209 }
210

211 # c l a s s i f y r o u t e r− l e v e l e d g e s (i n t e r n a l o r i n t e r −AS)

212 foreach ($rgraph−>unique edges){
213 i f (@{ $ }[0]>>16 == @{ $ }[1]> >16){ # i n t r a−AS l i n k

214 $rgraph−>s e t edge we i gh t (@{ $ } [0] ,@{ $ } [1] ,RLINK INTERNAL) ;

215 }
216 else { # i n t e r −AS l i n k

217 $rgraph−>s e t v e r t e x we i gh t (@{ $ } [0] ,ROUTER BORDER) ; # l a b e l b o t h r o u t e r s

a s b o r d e r

218 $rgraph−>s e t v e r t e x we i gh t (@{ $ } [1] ,ROUTER BORDER) ;

122

Appendix E.5 : Topology model module – topology.pm

219 }
220 }
221 foreach ($rgraph−>un i qu e v e r t i c e s){
222 # i f no l a b e l , c l a s s i f y a s i n t e r n a l r o u t e r

223 i f (not $rgraph−>has ve r t ex we ight ($)){
224 $rgraph−>s e t v e r t e x we i gh t ($,ROUTER INTERNAL) ;

225 }
226 }
227

228 # d i s p l a y i n f o r m a t i o n

229 i f ($show info){
230

231 #−− d i s p l a y pe r− l e v e l d i s t r i b u t i o n o f r o u t e r i n t e r f a c e s

232 my @in t e r f a c e s p e r l e v e l c o un t e r ;

233

234 # i n i t t o z e r o e s

235 foreach my $c (0 . .NLABELS RNODES−1){
236 foreach my $ l (0 . .NLEVELS−1){
237 $ i n t e r f a c e s p e r l e v e l c o u n t e r [$c] [$ l]=0;

238 }
239 }
240 # compute v a l u e s

241 foreach ($rgraph−>un i qu e v e r t i c e s){
242 my $ l = $asgraph−>ge t v e r t ex we i gh t ($ >>16) ; # g e t l e v e l

243 my $c = $rgraph−>ge t v e r t ex we i gh t ($) ; # i n t e r n a l o r b o r d e r

244 $ i n t e r f a c e s p e r l e v e l c o u n t e r [$c] [$ l]++;

245 }
246 # compute p e r l i n e t o t a l s , s t o r e d i n e x t r a co lumn

247 foreach my $c (0 . .NLABELS RNODES−1){
248 foreach my $ l (0 . .NLEVELS−1){
249 $ i n t e r f a c e s p e r l e v e l c o u n t e r [$c] [NLEVELS]+=

$ i n t e r f a c e s p e r l e v e l c o u n t e r [$c] [$ l] ;

250 }
251 }
252 # compute p e r co lumn t o t a l s (i n c l u d i n g l i n e sum) , s t o r e d i n e x t r a l i n e

253 foreach my $ l (0 . .NLEVELS){
254 foreach my $c (0 . .NLABELS RNODES−1){
255 $ i n t e r f a c e s p e r l e v e l c o u n t e r [NLABELS RNODES] [$ l]+=

$ i n t e r f a c e s p e r l e v e l c o u n t e r [$c] [$ l] ;

256 }
257 }
258 # d i s p l a y

259 print " - I N T E R F A C E - L E V E L : per - l e v e l d i s t r i b u t i o n \ n " ;

260 foreach my $c (0 . .NLABELS RNODES){ # f o r e a c h r o u t e r t y p e

261 print " " ;

262 foreach my $ l (0 . .NLEVELS){ # f o r e a c h l e v e l

263 print $ i n t e r f a c e s p e r l e v e l c o u n t e r [$c] [$ l] . " \ t " ;

264 }
265 print " \ n " ;

266 }
267

268 #−− compute i n t e r − l e v e l c o n n e c t i v i t y o f r o u t e r s (INTERNAL , PP , PC)

269 my @in t e r l e v e l r o u t e r c o nn e c t i v i t y ;

270

271 # i n i t t o a l l z e r o e s

272 foreach my $ l1 (0 . .NLEVELS−1){
273 foreach my $ l2 (0 . .NLEVELS−1){
274 foreach my $p (0 . . NLABELS RLINKS−1){
275 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2] [$p]=0;

276 }
277 }
278 }
279 # compute v a l u e s

280 foreach ($rgraph−>unique edges){
281 my $as1 = @{ $ }[0] > >16;

282 my $as2 = @{ $ }[1] > >16;

283 i f ($as1==$as2){ # i n t e r n a l l i n k

284 my $ l = $asgraph−>ge t v e r t ex we i gh t ($as1) ;

285 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l] [$ l] [RLINK INTERNAL]++;

286 }
287 else { # i n t e r −a s l i n k

123

APPENDICES E : Perl source code

288 # g e t l e v e l t o wh i c h b e l o n g s e a c h r o u t e r

289 my $ l1 = $asgraph−>ge t v e r t ex we i gh t ($as1) ;

290 my $ l2 = $asgraph−>ge t v e r t ex we i gh t ($as2) ;

291 # rem : c o n s i d e r i n d i v i d u a l r o u t e r s o f an AS o b e y s i t s p o l i c i e s

292 i f ($asgraph−>has edge ($as1 , $as2)){
293 i f ($asgraph−>has edge ($as2 , $as1)){ # edg e i n AS g r a ph i s

b i d i r e c t i o n a l a s1<−>a s 2

294 # add p e e r l i n k t w i c e 1/2 (o n c e f o r e a c h r o u t e r ’ s

l e v e l)

295 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2] [

RLINK PP]+=0.5;

296 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l2] [$ l 1] [

RLINK PP]+=0.5;

297 }
298 else { # edg e d i r e c t i o n i n AS g r a ph i s a s1−>a s 2

299 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2] [

RLINK PC]++;

300 }
301 }
302 e l s i f ($asgraph−>has edge ($as2 , $as1)){ # edg e d i r e c t i o n i n AS

g r a ph i s a s1<−a s 2

303 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l2] [$ l 1] [RLINK PC]++;

304 }
305 }
306 }
307 # compute t o t a l s

308 foreach my $ l1 (0 . .NLEVELS−1){ # p e r l i n e t o t a l s , s t o r e d i n e x t r a co lumn

309 foreach my $ l2 (0 . .NLEVELS−1){
310 foreach my $p (0 . . NLABELS RLINKS−1){
311 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [NLEVELS] [$p]+=

$ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2] [$p] ;

312 }
313 }
314 }
315 foreach my $ l2 (0 . .NLEVELS){ # p e r co lumn t o t a l s (i n c l u d i n g l i n e sum) , s t o r e d i n

e x t r a l i n e

316 foreach my $ l1 (0 . .NLEVELS−1){
317 foreach my $p (0 . . NLABELS RLINKS−1){
318 $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [NLEVELS] [$ l2] [$p]+=

$ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2] [$p] ;

319 }
320 }
321 }
322 # d i s p l a y

323 print " - I N T E R F A C E - L E V E L : inter - l e v e l c o n n e c t i v i t y (i n t e r n a l , pp , pc) \ n " ;

324 foreach my $ l1 (0 . .$# i n t e r l e v e l r o u t e r c o n n e c t i v i t y) { # f o r e a c h l e v e l 1

325 print " " ;

326 foreach my $ l2 (0. .$#{ $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1]}) { # f o r e a c h

l e v e l 2

327 foreach my $t (0. .$#{ $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2]})

{ # f o r e a c h l i n k t y p e (i n t e r n a l , PP , PC)

328 print $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2] [$t] ;

329 i f ($t !=$#{ $ i n t e r l e v e l r o u t e r c o n n e c t i v i t y [$ l1] [$ l 2]}) {
330 print " , " ;

331 }
332 }
333 print " \ t " ;

334 }
335 print " \ n " ;

336 }
337 }
338 }
339

340 # −−−−−[s o r t r o u t e r s b y l e v e l a n d t y p e]−−
341 # r e t u r n a r r a y c o n t a i n i n g s o r t e d r o u t e r s

342 # −−
343 sub s o r t r o u t e r s b y l e v e l a nd t yp e {
344

345 my ($rgraph , $asgraph) = @ ;

346

347 my @route r s by l eve l and type ;

124

Appendix E.5 : Topology model module – topology.pm

348 foreach ($rgraph−>un i qu e v e r t i c e s){
349 push (@{ $ r ou t e r s by l e v e l and typ e [$asgraph−>ge t v e r t ex we i gh t ($ >>16)] [$rgraph−>

ge t v e r t ex we i gh t ($)]} , $) ;

350 }
351 return \@route r s by l eve l and type ;

352 }
353

354 # −−−−−[s o r t a s e s b y l e v e l]−−
355 # −−−
356 sub s o r t a s e s b y l e v e l {
357 my $asgraph = sh i f t ;

358 my @as l eve l s ;

359 foreach ($asgraph−>un i qu e v e r t i c e s){
360 push (@{ $ a s l e v e l s [$asgraph−>ge t v e r t ex we i gh t ($)]} , $) ;

361 }
362 return \@as l eve l s ;

363 }
364

365 # −−−−−[g e t i n t e r f a c e s]−−
366 # −−−
367 sub g e t i n t e r f a c e s

368 {
369 my $topo = sh i f t ;

370

371 # ha sh s t o r i n g i p a d d r e s s e s

372 my %unique ;

373

374 # g l o b a l match a l l i p a d d r e s s e s c o n t a i n e d i n e a c h s t r i n g

375 foreach (@$topo) {
376 while (/(\d+)\ . (\d+)\ . (\d+)\ . (\d+)/g){
377 # remove d u p l i c a t e s by h a s h i n g on i p

378 $unique{ addre s s2 in t (" $1 . $2 . $3 . $4 ")}++;

379 }
380 }
381

382 # r e t u r n r e f e r e n c e t o i p a d d r e s s e s a r r a y

383 my @ips = keys(%unique) ;

384

385 return \@ips ;

386 }
387

388 # −−−−−[g e t l i n k s]−−−
389 # −−−
390 sub g e t l i n k s

391 {
392 my $topo = sh i f t ;

393

394 # ha sh s t o r i n g i p a d d r e s s e s

395 my %unique ;

396

397 # g l o b a l match a l l l i n k s c o n t a i n e d i n e a c h s t r i n g

398 foreach (@$topo) {
399 i f ($ =˜ m/net add l ink /){ # TODO o p t i m i z e

400 my $ip1 ;

401 my $ip2 ;

402

403 # match f i r s t i p

404 i f (/(\d+)\ . (\d+)\ . (\d+)\ . (\d+)/g){
405 $ip1 = " $1 . $2 . $3 . $4 " ;

406 # match s e c o n d i p

407 i f (/(\d+)\ . (\d+)\ . (\d+)\ . (\d+)/g){
408 $ip2 = " $1 . $2 . $3 . $4 " ;

409 }
410 }
411

412 # remove d u p l i c a t e s by h a s h i n g on b i g i n t r e p r e s e n t i n g s y m m e t r i c a l l i n k

413 $unique{ l i n k 2b i g i n t ($ip1 , $ip2 , 1) }++;

414 }
415 }
416

417 # r e t u r n r e f e r e n c e t o l i n k s a r r a y

125

APPENDICES E : Perl source code

418 my @links = keys(%unique) ;

419

420 return (\@links) ;

421 }

E.6 Tool module – tools.pm

1 #! / u s r / b i n / p e r l

2 # ===

3 # C o n v e r s i o n and c ommun i c a t i o n t o o l s ’ modu l e

4 # @(#) t o o l s . pm

5 # @autho r G r e g o r y C u l p i n

6 # @date 0 8 / 0 4 / 2 0 0 6

7 # @ l a s t d a t e 1 2 / 0 5 / 2 0 0 6

8 # ===

9

10 package t o o l s ;

11 require Exporter ;

12 @ISA= qw(Exporter) ;

13 @EXPORT= qw(random n from array

14 cbgp r e s e t

15 cbgp setup

16 cbgp check

17 feed

18 l i n k 2b i g i n t

19 b i g i n t 2 l i n k

20 b i g i n t 2 i n t s

21 in t2addre s s

22 addre s s2 in t

23 f i l e t o a r r a y

24 a r r a y o f z e r o s

25) ;

26 use constant {
27 # cbgp pa th

28 CBGP PATH => ’ c b g p ’ ,

29 } ;

30 use s t r i c t ;

31 use Data : : Dumper ;

32

33 # ===

34 # IP l i n k c o n v e r s i o n

35 # i n p u t : two IP a d d r e s s e s i n d o t t e d f o rma t , s y m e t r i c a l b o o l e a n

36 # o u t p u t : 64− b i t b i g i n t r e p r e s e n t i n g bo t h a d r e s s e s

37 # ===

38 sub l i n k 2 b i g i n t

39 {
40 my ($IP1 , $IP2 , $sym) = @ ;

41

42 my $ip1 = addre s s2 in t ($IP1) ; # c o n v e r t t o number f o r m a t

43 my $ip2 = addre s s2 in t ($IP2) ;

44

45 my $big ; # u s e b i g i n t t o g e n e r a t e 64− b i t l i n k i d e n t i f i e r

46

47 # L ink d i s c o v e r y c o n s i d e r e d s y m e t r i c a l by s t o r i n g l i n k s by ” s m a l l e s t ” i p a d d r e s s

48 # No s yme t r y i n v o l v e d i n c o n v e r t i n g a c o u p l e o f IP a d d r e s s e s f o r d o u b l e t r e e a l g o r i t h m

49 i f ($ip1<$ip2 or $sym==0){
50 $big = Math : : BigInt−>new($ip1) ;

51 $big−>b l s f t (32) ; # h i g h b i t s a r e f i r s t IP a d d r e s s (s h i f t e d 32 b i t s t o t h e l e f t)

52 $big−>badd ($ip2) ;

53 } else {
54 $big = Math : : BigInt−>new($ip2) ;

55 $big−>b l s f t (32) ; # h i g h b i t s a r e s e c o n d IP a d d r e s s (s h i f t e d 32 b i t s t o t h e l e f t)

56 $big−>badd ($ip1) ;

57 }
58

59 return $big ;

60 }

126

Appendix E.6 : Tool module – tools.pm

61

62 # ===

63 # IP l i n k c o n v e r s i o n

64 # i n p u t : 64− b i t b i g i n t r e p r e s e n t i n g bo t h a d r e s s e s

65 # o u t p u t : l i n k o f two IP a d d r e s s e s i n d o t t e d f o r m a t

66 # ===

67 sub b i g i n t 2 l i n k

68 {
69 my $VALUE= Math : : BigInt−>new(sh i f t) ;

70

71 my $IP1 = $VALUE−>copy ()−>b r s f t (32) ; # = g e t 32 h i g h b i t s , u s e c opy t o n o t mod i f y $VALUE

72 my $IP2 = $VALUE−>copy ()−>band (4294967295) ; # g e t 32 l ow b i t s , z e r o o u t 32 h i g h b i t s

73

74 return (i n t2addre s s ($IP1) , i n t2addre s s ($IP2)) ;

75 }
76

77 # ===

78 # IP l i n k c o n v e r s i o n

79 # i n p u t : 64− b i t b i g i n t r e p r e s e n t i n g bo t h a d r e s s e s

80 # o u t p u t : two 32− b i t i n t s r e p r e s e n t i n g bo t h a d r e s s e s

81 # ===

82 sub b i g i n t 2 i n t s

83 {
84 my $VALUE= Math : : BigInt−>new(sh i f t) ;

85

86 my $IP1 = $VALUE−>copy ()−>b r s f t (32) ; # = g e t 32 h i g h b i t s , u s e c opy t o n o t mod i f y $VALUE

87 my $IP2 = $VALUE−>copy ()−>band (4294967295) ; # g e t 32 l ow b i t s , z e r o o u t 32 h i g h b i t s

88

89 return ($IP1 , $IP2) ;

90 }
91

92 # ===

93 # IP a d d r e s s c o n v e r s i o n

94 # i n p u t : 32− b i t IP a d d r e s s i n d o t t e d f o r m a t

95 # o u t p u t : 32− b i t i n t r e p r e s e n t i n g IP a d d r e s s

96 # ===

97 sub addre s s2 in t ($)

98 {
99 my $ADDRESS= sh i f t ;

100 my @FIELDS= sp l i t /\ . / , $ADDRESS;

101 (scalar (@FIELDS) == 4) or die " E r r o r : i n c o r r e c t a d d r e s s f o r m a t \" $ A D D R E S S \" ! " ;

102

103 return (($FIELDS[0]∗256+$FIELDS [1]) ∗256+$FIELDS [2]) ∗256+$FIELDS [3] ;

104 }
105

106 # ===

107 # IP a d d r e s s c o n v e r s i o n

108 # i n p u t : 32− b i t i n t r e p r e s e n t i n g IP a d d r e s s (number f o r m a t)

109 # o u t p u t : 32− b i t IP a d d r e s s i n d o t t e d f o r m a t

110 # ===

111 sub i n t2addre s s ($)

112 {
113 my $VALUE= sh i f t ;

114

115 my $ADDRESS= " " . ($VALUE % 256) ;

116 $VALUE= int ($VALUE / 256) ;

117 $ADDRESS= ($VALUE % 256) . " . $ A D D R E S S " ;

118 $VALUE= int ($VALUE / 256) ;

119 $ADDRESS= ($VALUE % 256) . " . $ A D D R E S S " ;

120 $VALUE= int ($VALUE / 256) ;

121

122 return " $ V A L U E . $ A D D R E S S " ;

123 }
124

125 # ===

126 # Read f i l e

127 # ===

128 sub f i l e t o a r r a y

129 {
130 my ($f i l ename , $show info) = @ ;

131 my @l ines ;

127

APPENDICES E : Perl source code

132

133 i f ($ f i l ename eq ’ ’) {
134 # no f i l e p r o v i d e d

135 }
136 else {
137 open(FILE , " < $ f i l e n a m e ") or die " Can ’ t o p e n $ f i l e n a m e : $! " ;

138 while (<FILE>) {
139 s/#. ∗ / / ; # i g n o r e comments by e r a s i n g them

140 next i f /ˆ(\ s)∗$ / ; # s k i p b l a n k l i n e s

141 chomp ; # remove t r a i l i n g n e w l i n e c h a r a c t e r s

142 push @lines , $; # push t h e d a t a l i n e o n t o t h e a r r a y

143 }
144 close FILE ;

145 print " - I m p o r t e d " . (@l ines) . " l i n e s f r o m $ f i l e n a m e \ n " i f $show info ;

146 }
147

148 return \@l ines ; # a r r a y r e f e r e n c e

149 }
150

151 # g e t n random e l e m e n t s f r om a r r a y

152 sub random n from array {
153

154 my ($n , $array) = @ ;

155

156 i f (scalar @{ $array}<=$n){ # s end ba ck f u l l a r r a y i f n o t enough e l e m e n t s

157 return @{ $array } ;

158 }
159 else { # add r andom l y e l e m e n t s t o ha sh u n t i l i t c o n t a i n s s u f f i c i e n t e l e m e n t s

160 my %unique ;

161 while (keys(%unique)<$n){
162 $unique{@{ $array } [rand (@{ $array })]}++;

163 }
164 return (keys(%unique)) ;

165 }
166 }
167

168 sub cbgp r e s e t

169 {
170 my $cbgp re f = sh i f t ;

171 # r e s e t and f i n a l i z e c u r r e n t cbgp p r o c e s s

172 $$cbgp re f−>f i n a l i z e ;

173 while (my $re s= $$cbgp re f−>expect (0)) {
174 die " E r r o r : e x p e c t \" $ r e s \"\ n " ;

175 }
176 # spawn new p r o c e s s

177 $$cbgp re f = CBGP−>new(CBGP PATH) ;

178 $$cbgp re f−>spawn ;

179 die i f $$cbgp re f−>send (" set a u t o f l u s h on \ n ") ;

180 cbgp check ($cbgp re f) ;

181 }
182

183 sub cbgp setup

184 {
185 my ($cbgp re f , $ a s f i l e , $ r f i l e , $rtopo) = @ ;

186 i f ($ r f i l e ne ’ ’) {
187 $$cbgp re f−>send (" i n c l u d e $ r f i l e \ n ") ;

188 }
189 else {
190 $$cbgp re f−>send (" bgp t o p o l o g y l o a d $ a s f i l e \ n ") ;

191 $$cbgp re f−>send (" bgp t o p o l o g y p o l i c i e s \ n ") ;

192 $$cbgp re f−>send (" bgp t o p o l o g y run \ n ") ;

193 }
194 cbgp check ($cbgp re f) ;

195 }
196

197 sub cbgp check

198 {
199 my $cbgp re f = sh i f t ;

200 $$cbgp re f−>send (" p r i n t \" C H E C K \\ n \"\ n ") ;

201 $ = $$cbgp re f−>expect (1) ;

202 chomp ;

128

Appendix E.6 : Tool module – tools.pm

203 i f ($ ne " C H E C K ") {
204 die " E r r o r : p r o b l e m w i t h c b g p s i m u l a t o r \ n " ;

205 }
206 }
207

208 sub f e ed

209 {
210 my ($cbgp , $commands) = @ ;

211

212 foreach (@$commands) { # s end e a c h command t o cbgp

213 $cbgp−>send (" $_ \ n ") ;

214 }
215 }

129

